【題目】將四張邊長各不相同的正方形紙片按如圖方式放入矩形內(nèi)(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示.設(shè)右上角與左下角陰影部分的周長的差為.若知道的值,則不需測量就能知道周長的正方形的標(biāo)號為( )
A.①B.②C.③D.④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1的矩形ABCD中,有一點E在AD上,今以BE為折線將A點往右折,如圖2所示,再作過A點且與CD垂直的直線,交CD于F點,如圖3所示,若AB=6,BC=13,∠BEA=60°,則圖3中AF的長度為何?( 。
A. 2 B. 4 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=﹣x+3交x軸于點A,交y軸于點B,頂點為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過點A,交x軸于另一點C,連接BD,AD,CD,如圖所示.
(1)直接寫出拋物線的解析式和點A,C,D的坐標(biāo);
(2)動點P在BD上以每秒2個單位長的速度由點B向點D運動,同時動點Q在CA上以每秒3個單位長的速度由點C向點A運動,當(dāng)其中一個點到達(dá)終點停止運動時,另一個點也隨之停止運動,設(shè)運動時間為t秒.PQ交線段AD于點E.
①當(dāng)∠DPE=∠CAD時,求t的值;
②過點E作EM⊥BD,垂足為點M,過點P作PN⊥BD交線段AB或AD于點N,當(dāng)PN=EM時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在直線l上,點Q沿著直線l以3厘米/秒的速度由點A向右運動,以AQ為邊作Rt,使∠BAQ=90°,,點C在點Q右側(cè),CQ=1厘米,過點C作直線m⊥l,過的外接圓圓心O作OD⊥m于點D,交AB右側(cè)的圓弧于點E.在射線CD上取點F,使DF=CD,以DE、DF為鄰邊作矩形DEGF.設(shè)運動時間為t秒.
(1)直接用含t的代數(shù)式表示BQ、DF;
(2)當(dāng)0<t<1時,求矩形DEGF的最大面積;
(3)點Q在整個運動過程中,當(dāng)矩形DEGF為正方形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有330臺機(jī)器需要一次性運送到某地,計劃租用甲、乙兩種貨車共8輛來完成此項任務(wù). 已知每輛甲種貨車一次最多運送機(jī)器45臺、租車費用400元,每輛乙種貨車一次最多運送機(jī)器30臺租車費用280元. 設(shè)租用甲種貨車輛(為正整數(shù))
(1)請用含的代數(shù)式表示租車費用;
(2)存在能完成此項運送任務(wù)的最節(jié)省費用的租車方案嗎?若存在,請計算并給出租車方案;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于點C,連接AD,OC.若△ABO的周長為,AD=2,則△ACO的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(-2,n),B(1,-2)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若C是x軸上一動點,設(shè)t=CB-CA,求t的最大值,并求出此時點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于未知數(shù)為 x,y 的二元一次方程組,如果方程組的解 x,y 滿足 ,我們就說方程組的解 x 與 y 具有“鄰好關(guān)系”.
(1) 方程組的解x與y是否具有“鄰好關(guān)系”? 說明你的理由;
(2) 若方程組的解x與y具有“鄰好關(guān)系”,求m的值;
(3) 未知數(shù)為x,y的方程組,其中a與x,y都是正整數(shù),該方程組的解x與y是否具有“鄰好關(guān)系”? 如果具有,請求出a的值及方程組的解;如果不具有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com