若G是△ABC的重心,GP∥BC交AB于點(diǎn)P,BC=3
3
,則GP等于
 
分析:設(shè)AG的延長(zhǎng)線(xiàn)交BC于D,由三角形重心的性質(zhì)知:BD=
1
2
BC,且AG:AD=2:3;進(jìn)而可由△APG∽△ABD得到的成比例線(xiàn)段求得GP的長(zhǎng).
解答:解:如圖;G是△ABC的重心,PG∥BC;精英家教網(wǎng)
∵G是△ABC的重心,
∴BD=DC=
3
3
2
,AG=2GD,即AG:GD=2:3;
∵PG∥BC,
∴△APG∽△ABD
∴PG:BD=AG:GD=2:3,即PG=
2
3
BD=
3
點(diǎn)評(píng):此題主要考查的是三角形的重心及相似三角形的判定和性質(zhì);需注意的是三角形的重心是三條中線(xiàn)的交點(diǎn),不要混淆概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(0,
3
)、B(3,0),以AB為一邊作等邊△ABC,且點(diǎn)C在第一象限.則點(diǎn)C的坐標(biāo)是
(3,2
3
(3,2
3
,若G是△ABC的重心,則G的坐標(biāo)是
(2,
3
(2,
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•綿陽(yáng))我們知道,三角形的三條中線(xiàn)一定會(huì)交于一點(diǎn),這一點(diǎn)就叫做三角形的重心.重心有很多美妙的性質(zhì),如關(guān)于線(xiàn)段比.面積比就有一些“漂亮”結(jié)論,利用這些性質(zhì)可以解決三角形中的若干問(wèn)題.請(qǐng)你利用重心的概念完成如下問(wèn)題:
(1)若O是△ABC的重心(如圖1),連結(jié)AO并延長(zhǎng)交BC于D,證明:
AO
AD
=
2
3
;
(2)若AD是△ABC的一條中線(xiàn)(如圖2),O是AD上一點(diǎn),且滿(mǎn)足
AO
AD
=
2
3
,試判斷O是△ABC的重心嗎?如果是,請(qǐng)證明;如果不是,請(qǐng)說(shuō)明理由;
(3)若O是△ABC的重心,過(guò)O的一條直線(xiàn)分別與AB、AC相交于G、H(均不與△ABC的頂點(diǎn)重合)(如圖3),S四邊形BCHG,S△AGH分別表示四邊形BCHG和△AGH的面積,試探究
S四邊形BCHG
S△AGH
的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,D是BC上的點(diǎn),E是AD上一點(diǎn),且
AB
AC
=
AD
CE
,∠BAD=∠ECA.
(1)求證:AC2=BC•CD;
(2)若E是△ABC的重心,求AC2:AD2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(四川綿陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川綿陽(yáng)14分)我們知道,三角形的三條中線(xiàn)一定會(huì)交于一點(diǎn),這一點(diǎn)就叫做三角形的重心.重心有很多美妙的性質(zhì),如關(guān)于線(xiàn)段比.面積比就有一些“漂亮”結(jié)論,利用這些性質(zhì)可以解決三角形中的若干問(wèn)題.請(qǐng)你利用重心的概念完成如下問(wèn)題:

(1)若O是△ABC的重心(如圖1),連結(jié)AO并延長(zhǎng)交BC于D,證明:

(2)若AD是△ABC的一條中線(xiàn)(如圖2),O是AD上一點(diǎn),且滿(mǎn)足,試判斷O是△ABC的重心嗎?如果是,請(qǐng)證明;如果不是,請(qǐng)說(shuō)明理由;

(3)若O是△ABC的重心,過(guò)O的一條直線(xiàn)分別與AB、AC相交于G、H(均不與△ABC的頂點(diǎn)重合)(如圖3),S四邊形BCHG,SAGH分別表示四邊形BCHG和△AGH的面積,試探究的最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案