精英家教網 > 初中數學 > 題目詳情
如圖,四邊形ABCD中,∠A ="∠C=" 90°,BE平分∠ABC,DF平分∠ADC,則BE與DF有何位置關系?試說明理由。(10分)
BE∥DF,理由見解析
理由: ∵∠A=∠C=90°
∴∠ABC+∠ADC=180°
∵∠1=∠2=1/2∠ABC
∴∠3=∠4=1/2∠ADC
∴∠1+∠3=90°
又∵∠A=90°
∴∠1+∠AEB=90°
∴∠AEB=∠3
∴BE∥DF
根據四邊形的內角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根據角平分線定義、等角的余角相等易證明和BE與DF兩條直線有關的一對同位角相等,從而證明兩條直線平行.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖(1),在矩形ABCD中,把∠B、∠D分別翻折,使點B、D分別落在對角線BC上的點E、F處,折痕分別為CM、AN.
(1)求證:△AND≌△CBM.
(2)請連接MF、NE,證明四邊形MFNE是平行四邊形,四邊形MFNE是菱形嗎?請說明理由?
(3)P、Q是矩形的邊CD、AB上的兩點,連結PQ、CQ、MN,如圖(2)所示,若PQ=CQ,PQ∥MN。且AB=4,BC=3,求PC的長度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,將由5個邊長為1的小正方形組成的十字形紙板沿虛線剪拼成一個大正方形,需剪4
刀。

(1) 思考發(fā)現:大正方形的面積等于5個小正方形的面積和,大正方形的邊長等于_______。
(2) 實踐操作:如圖2,將網格中5個邊長為1的小正方形組成的圖形紙板剪拼成一個大正方形,要求剪
兩刀,畫出剪拼的痕跡。
(3) 智力開發(fā):將網格中的5個邊長為1的正方形組成的十字形紙板,要求只剪2刀也拼成一個大正方形。
在圖中用虛線畫出剪拼的痕跡。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

下列命題中,有幾個真命題                      ( ▲ )
①同位角相等         ②直角三角形的兩個銳角互余
③平行四邊形的對角線互相平分且相等     ④對頂角相等
A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

將兩張長方形紙片如圖所示擺放,使其中一張長方形紙片的一個頂點恰好落在另一張長方形紙片的一條邊上,已知∠BEF=30°,則∠CMF=________°.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B、C重合),現將△PCD沿直線PD折疊,使點C 落到點C’處;作∠BPC’的角平分線交AB于點E.設BP=x,BE=y, 則下列圖象中,能表示y與x的函數關系的圖象大致是(     )

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖①,若∠B=∠C,試求出∠C的度數;
(2)如圖②,若∠ABC的角平分線交DC于點E,且BE∥AD,試求出∠C的度數;
(3)如圖③,若∠ABC和∠BCD的角平分線交于點E,試求出∠BEC的度數.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,CD與BE互相垂直平分,AD⊥DB,∠BDE=70°,則∠CAD=        °.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,在矩形ABCD中,點E是邊AD上一點,BC=2AB,AD=BE,那么∠ECD=    ▲    度

查看答案和解析>>

同步練習冊答案