【題目】已知:AB是⊙O的直徑,直線CP切⊙O于點(diǎn)C,過(guò)點(diǎn)B作BD⊥CP于D.
(1)求證:CB2=ABDB;
(2)若⊙O的半徑為2,∠BCP=30°,求圖中陰影部分的面積.
【答案】(1)證明見(jiàn)解析;
(2)陰影部分的面積=
【解析】試題分析:(1)由CP是 ⊙O的切線,得出∠BCD=∠BAC,AB是直徑,得出∠ACB=90°,所以∠ACB=∠CDB=90°,得出結(jié)論△ACB∽△CDB,從而得出結(jié)論;
(2)求出△OCB是正三角形,陰影部分的面積=S扇形OCB-S△OCB=.
試題解析:
(1)提示:先證∠ACB=∠CDB=90°,
再證∠BAC=∠BCD,
得△ACB∽△CDB,
∴
(2)解:如圖,連接OC,
∵直線CP是⊙O的切線,∠BCP=30°,
∴∠COB=2∠BCP=60°,
∴△OCB是正三角形,
∵⊙O的半徑為2,
∴S△OCB=,S扇形OCB= ,
∴陰影部分的面積=S扇形OCB-S△OCB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C、E、P均在坐標(biāo)軸上,A(0,3)、B(﹣4,0)、P(0,﹣3),點(diǎn)C是線段OP(不包含O、P)上一動(dòng)點(diǎn),AB∥CE,延長(zhǎng)CE到D,使CD=BA
(1)如圖,點(diǎn)M在線段AB上,連MD,∠MAO與∠MDC的平分線交于N.若∠BAO=α,∠BMD=130°,則∠AND的度數(shù)為
(2)如圖,連BD交y軸于F.若OC=2OF,求點(diǎn)C的坐標(biāo)
(3)如圖,連BD交y軸于F,在點(diǎn)C運(yùn)動(dòng)的過(guò)程中, 的值是否變化?若不變,求出其值;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分線,DE平分∠ADC交AC于E,則∠ADE= °。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AD是高,AE是角平分線.
(1)若∠B=20°,∠C=60°,求∠EAD度數(shù);
(2)若∠B=α,∠C=β(β>a),求∠EAD.(用α、β的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)P(x,5)在第二象限內(nèi),則x應(yīng)是( )
A.正數(shù)
B.負(fù)數(shù)
C.非負(fù)數(shù)
D.有理數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.
(1)求證:AB∥CD;
(2)H是直線CD上一動(dòng)點(diǎn)(不與點(diǎn)D重合),BI平分∠HBD.寫出∠EBI與∠BHD的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將直線y=3x+2沿y軸向下平移5個(gè)單位長(zhǎng)度,則平移后直線與y軸的交點(diǎn)坐標(biāo)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com