【題目】如圖所示,已知AB⊙O的直徑,CD是弦,且AB⊥CD于點E,連接ACOC、BC

1)求證:∠ACO∠BCD

2)若EB8cm,CD24cm,求⊙O的面積.(結(jié)果保留π

【答案】1)見解析;(2169πcm2).

【解析】

1)根據(jù)垂徑定理,即可得,根據(jù)同弧所對的圓周角相等,證出∠BAC=∠BCD,再根據(jù)等邊對等角,即可得到∠BAC=∠ACO,從而證出∠ACO∠BCD

2)根據(jù)垂徑定理和勾股定理列出方程,求出圓的半徑,即可求出圓的面積.

解:(1)∵AB為⊙O的直徑,ABCD

∴∠BAC=∠BCD

OAOC,

∴∠BAC=∠ACO

∴∠ACO=∠BCD

2)∵AB為⊙O的直徑,ABCD,

CECD×2412cm).

RtCOE中,設COr,則OEr8,

根據(jù)勾股定理得:122+r82r2

解得r13

SO π×132169πcm2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘游輪在A處測得北偏東45°的方向上有一燈塔B.游輪以20海里/時的速度向正東方向航行2小時到達C處,此時測得燈塔BC處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結(jié)果精確到1海里,參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtΔABC,∠C=90°,AC=4cmBC=3cm,動點MN從點C同時出發(fā),均以每秒1cm的速度分別沿CACB向終點A、B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,MN,設移動時間為t(單位:秒,0<t<2.5).

(1)當t為何值時,ΔMCN面積為2cm?

(2)是否存在某一時刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請說明理由;

(3)當t為何值時,以A、P、M為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列材料,然后解后面的問題.

材料:一個三位自然數(shù) (百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c),若滿足a+c=b,則稱這個三位數(shù)為歡喜數(shù),并規(guī)定F=ac.如374,因為它的百位上數(shù)字3與個位數(shù)字4之和等于十位上的數(shù)字7,所以374歡喜數(shù)F374=3×4=12

1)對于歡喜數(shù),若滿足b能被9整除,求證:歡喜數(shù)能被99整除;

2)已知有兩個十位數(shù)字相同的歡喜數(shù)”mnmn),若Fm﹣Fn=3,求m﹣n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBC,∠D90°AD2,BC12DC10,若在邊DC上有點P,使PADPBC相似,則這樣的點P_____個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB6cm,AD10cm,點E、F在矩形ABCD的邊AB、AD上運動,將AEF沿EF折疊,使點A′BC邊上,當折痕EF移動時,點A′BC邊上也隨之移動.則A′C的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明到商場購買某個牌子的鉛筆支,用了元(為整數(shù)).后來他又去商場時,發(fā)現(xiàn)這種牌子的鉛筆降階,于是他比上一次多買了支鉛筆,用了元錢,那么小明兩次共買了鉛筆________支.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ABC=90°,∠BAC30°,將ABC繞點A順時針旋轉(zhuǎn)一定的角度得到AED,點B、C的對應點分別是E、D.

(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);

(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】傳統(tǒng)的端午節(jié)即將來臨,某企業(yè)接到一批粽子生產(chǎn)任務,約定這批粽子的出廠價為每只4元,按要求在20天內(nèi)完成.為了按時完成任務,該企業(yè)招收了新工人,設新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,yx滿足如下關系:

y=

(1)李明第幾天生產(chǎn)的粽子數(shù)量為280只?

(2)如圖,設第x天生產(chǎn)的每只粽子的成本是p元,px之間的關系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求wx之間的函數(shù)表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)

查看答案和解析>>

同步練習冊答案