【題目】如圖,四邊形ABCD和四邊形ACED都是平行四邊形,點R為DE的中點,BR分別交AC和CD于點P,Q.
(1)求證:△ABP∽△DQR;
(2)求的值.
【答案】(1)見解析;(2).
【解析】
(1)根據平行線的性質可證明兩三角形相似;
(2)根據平行四邊形的性質及三角形中位線定理得:BP=PR,則CP=RE,證明△CPQ∽△DRQ,可得,由(1)中的相似列比例式可得結論.
(1)∵四邊形ABCD和四邊形ACED都是平行四邊形,
∴AB∥CD,AC∥DE,
∴∠BAC=∠ACD,∠ACD=∠CDE,
∴∠BAC=∠QDR,
∵AB∥CD,
∴∠ABP=∠DQR,
∴△ABP∽△DQR;
(2)∵四邊形ABCD和四邊形ACED都是平行四邊形,
∴AD=BC,AD=CE,
∴BC=CE,
∵CP∥RE,
∴BP=PR,
∴CP=RE,∵點R為DE的中點,
∴DR=RE,
∴,
∵CP∥DR,
∴△CPQ∽△DRQ,
∴,
∴,
由(1)得:△ABP∽△DQR,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知,平分外角,平分外角.直接寫出和的數(shù)量關系,不必證明;
(2)如圖2,已知,和三等分外角,和三等分外角.試確定和的數(shù)量關系,并證明你的猜想;(不寫證明依據)
(3)如圖3,已知,、和四等分外角,、和四等分外角.試確定和的數(shù)量關系,并證明你的猜想;(不寫證明依據)
(4)如圖4,已知,將外角進行分,是臨近邊的等分線,將外角進行等分,是臨近邊的等分線,請直接寫出和的數(shù)量關系,不必證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點D是邊BC上(不與B,C重合)一動點,∠ADE=∠B=a,DE交AC于點E,下列結論:①AD2=AE.AB;②1.8≤AE<5;⑤當AD=時,△ABD≌△DCE;④△DCE為直角三角形,BD為4或6.25.其中正確的結論是_____.(把你認為正確結論序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△OAB中,OA=OB,⊙O經過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接EC,CD.
(1)試判斷AB與⊙O的位置關系,并加以證明;
(2)若tanE=,⊙O的半徑為3,求OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著中國經濟的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起.高鐵大大縮短了時空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據:≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,點E、F分別在邊AB、DC上,下列條件不能使四邊形EBFD是平行四邊形的條件是( )
A.DE=BFB.AE=CFC.DE∥FBD.∠ADE=∠CBF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列多面體,并把下表補充完整.
名稱 | 三棱柱 | 四棱柱 | 五棱柱 | 六棱柱 |
圖形 | ||||
頂點數(shù) | 6 | 10 | 12 | |
棱數(shù) | 9 | 12 | ||
面數(shù) | 5 | 8 |
觀察上表中的結果,你能發(fā)現(xiàn)、、之間有什么關系嗎?請寫出關系式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在自動向西的公路l上有一檢查站A,在觀測點B的南偏西53°方向,檢查站一工作人員家住在與觀測點B的距離為7km,位于點B南偏西76°方向的點C處,求工作人員家到檢查站的距離AC.(參考數(shù)據:sin76°≈,cos76°≈,tan 76°≈4,sin53°≈,tan53°≈)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com