【題目】如圖,在ABC中,ABAC5,BC6,將ABC繞點B逆時針旋轉60°得到A'BC,連接A'C,則A'C的長為( 。

A. 6B. 4+2C. 4+3D. 2+3

【答案】C

【解析】

連結CC′,A′CB C′O點,如圖,利用旋轉的性質得BCBC′6,∠CBC′60°A′BABACA′C′5,則可判斷BCC′為等邊三角形,接著利用線段垂直平分線定理的逆定理說明A′C垂直平分BC',則BOBC′3,然后利用勾股定理計算出A′O,CO,即可求解.

解:連結CC′,A′CB C′O點,如圖,

∵△ABC繞點B逆時針旋轉60°得到A′BC′,

BCBC′6,∠CBC′60°,A′BABACA′C′5,

∴△BCC′為等邊三角形,

CBCB′

A′BA′C′,

A′C垂直平分BC',

BOBC′3,

A'O4

CO3

A'CA'O+CO4+3

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知為銳角內(nèi)部一點,過點于點,于點,以為直徑作,交直線于點,連接,于點.

1)求證:.

2)連接,當,時,在點的整個運動過程中.

①若,求的長.

②若為等腰三角形,求所有滿足條件的的長.

3)連接,于點,當時,記的面積為的面積為,請寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,對角線ACBD相交于點O,過點O作直線EFBD,且交AD于點E,交BC于點F,連接BE,DF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫出∠EBF的度數(shù).

2)把(1)中菱形BFDE進行分離研究,如圖2,G,I分別在BF,BE邊上,且BGBI,連接GDHGD的中點,連接FH,并延長FHED于點J,連接IJIH,IF,IG.試探究線段IHFH之間滿足的關系,并說明理由;

3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足ABAD時,點E是對角線AC上一點,連接DE,作EFDE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關系h20t5t2.下列敘述正確的是(  )

A. 小球的飛行高度不能達到15m

B. 小球的飛行高度可以達到25m

C. 小球從飛出到落地要用時4s

D. 小球飛出1s時的飛行高度為10m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點A0,2),B2,2),拋物線Fyx22mx+m22

1)求拋物線F的頂點坐標(用含m的式子表示);

2)當拋物線F與線段AB有公共點時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電視臺為了解本地區(qū)電視節(jié)目的收視情況,對部分市民開展了你最喜愛的電視節(jié)目的問卷調查(每人只填寫一項),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖(如圖所示),根據(jù)要求回答下列問題:

(1)本次問卷調查共調查了________名觀眾;圖②中最喜愛新聞節(jié)目的人數(shù)占調查總人數(shù)的百分比為________;

(2)補全圖①中的條形統(tǒng)計圖;

(3)現(xiàn)有最喜愛新聞節(jié)目(記為),“體育節(jié)目(記為),“綜藝節(jié)目(記為),“科普節(jié)目(記為)的觀眾各一名,電視臺要從四人中隨機抽取兩人參加聯(lián)誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛兩位觀眾的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在菱形ABCD中,動點P從點B出發(fā),沿折線BCDB運動.設點P經(jīng)過的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于( 。

A. B. C. 5D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】選用適當?shù)姆椒ń庀铝蟹匠?/span>

(1)(x1) 23 (x 1)20 (2) (3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重慶某中學組織七、八、九年級學生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是 度,并補全條形統(tǒng)計圖;

(2)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在?,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在校刊上的概率.

查看答案和解析>>

同步練習冊答案