關(guān)于x的一元二次方程(m-1)x2+2mx+m+2=0有兩個實數(shù)根,求m的取值范圍.
考點:根的判別式
專題:計算題
分析:根據(jù)一元二次方程的定義和判別式的意義得到m-1≠0且△=4m2-4(m-1)(m+2)≥0,然后解兩個不等式得到它們的公共部分即可.
解答:解:根據(jù)題意得m-1≠0且△=4m2-4(m-1)(m+2)≥0,
解得m≤2且m≠1.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

用因式分解解下列方程:
(1)3x2+5x=0;
(2)(2x-1)2=0;
(3)(2x-5)2=9;
(4)4x2-(x-1)2=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰直角△ACB中,∠ACB=90°,CE=CD,連接BE、DA交于點O,CF⊥BE交AB于點F,在BE的延長線上取一點G,連接GF與AC、AD分別交于點M、點N,使得GM=GE.
(1)求證:△ADC≌△BEC;GF⊥AD;
(2)若FG=5,BG=11,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知平面直角坐標系中,拋物線y=-x2+4x與x軸交于點A(x1,0),x1>0,對稱軸為直線l,點P(m,n)為拋物線上一點,且在第四象限,點P關(guān)于直線l對稱點為E,點E關(guān)于x軸的對稱點為F,若四邊形OPAF的面積為20,求m、n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明家的窗戶如圖所示,它是由一個半圓和一個長方形組成.做一個這樣的窗戶總材料為6m.設(shè)窗戶半圓的半徑為xm.怎么用關(guān)于x的代數(shù)式表示窗戶的透光面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用配方法解決關(guān)于x的方程:
(1)x2-x-
1
3
=0 
(2)x2-mx+n=0(m2-4n>0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB與CD相交于點O,OE平分∠AOC,射線OF⊥CD于點O,且∠BOF=32°,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若m2=m+1,n2-n-1=0且m≠n,試求代數(shù)式m7+n7的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若關(guān)于x的方程m(2x+1)=n(x+5)+3(x-1)有無數(shù)多個解,則(n-m)2013=
 

查看答案和解析>>

同步練習冊答案