機器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點A處,再沿正南方向行走14米至點B處,最后沿正東方向行走至點C處,點B、C都在圓O上.
(1)求弦BC的長;(2)求圓O的半徑長.
(本題參考數(shù)據:sin67.4°=數(shù)學公式,cos67.4°=數(shù)學公式,tan67.4°=數(shù)學公式

解:(1)連接OB,過點O作OD⊥AB,
∵AB∥SN,∠AON=67.4°,
∴∠A=67.4°.
∴OD=AO•sin 67.4°=13×=12.
又∵BE=OD,
∴BE=12.
根據垂徑定理,BC=2×12=24(米).

(2)∵AD=AO•cos 67.4°=13×=5,
∴OD==12,
BD=AB-AD=14-5=9.
∴BO==15.
故圓O的半徑長15米.
分析:(1)過O作OD⊥AB于D,則∠AOB=90°-67.4°=22.6°.在Rt△AOD中,利用∠AOB的三角函數(shù)值即可求出OD,AD的長;
(2)求出BD的長,根據勾股定理即可求出BO的長.
點評:(1)將解直角三角形和勾股定理的應用相結合,求出BE,再根據垂徑定理求出BC的長即可,有一定的綜合性;
(2)利用(1)的結論,再根據勾股定理,即可求出半徑.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

機器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏精英家教網西67.4°方向行走13米至點A處,再沿正南方向行走14米至點B處,最后沿正東方向行走至點C處,點B、C都在圓O上.
(1)求弦BC的長;(2)求圓O的半徑長.
(本題參考數(shù)據:sin67.4°=
12
13
,cos67.4°=
5
13
,tan67.4°=
12
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•路南區(qū)一模)機器人“海寶”在某圓形區(qū)域按下列程序設計表演.其中,B、C在圓O上.
(1)請按程序補全下面圖形;
(2)求BC的距離;
(3)求圓O的半徑長.
(本題參考數(shù)據:sin67.4°=
12
13
,cos67.4°=
5
13
,tan67.4°=
12
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(10分)機器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西方向行走13m至A處,再沿正南方向行走14m至點B處,最后沿正東方向行走至點C處,點B、C都在圓O上。
【小題1】(1)求弦BC的長;
【小題2】(2)求圓O的半徑。(本題參考數(shù)據:,,

查看答案和解析>>

科目:初中數(shù)學 來源:2011年湖北省孝南區(qū)車站中學中考模擬數(shù)學卷 題型:解答題

(10分)機器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西方向行走13m至A處,再沿正南方向行走14m至點B處,最后沿正東方向行走至點C處,點B、C都在圓O上。
【小題1】(1)求弦BC的長;
【小題2】(2)求圓O的半徑。(本題參考數(shù)據:,

查看答案和解析>>

科目:初中數(shù)學 來源:2011年湖北省中考模擬數(shù)學卷 題型:解答題

(10分)機器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西方向行走13m至A處,再沿正南方向行走14m至點B處,最后沿正東方向行走至點C處,點B、C都在圓O上。

1.(1)求弦BC的長;

2.(2)求圓O的半徑。(本題參考數(shù)據:,

 

 

查看答案和解析>>

同步練習冊答案