在△ABC中,BC=a,AC=b,AB=c,∠C=90°,CD和BE是△ABC的兩條中線,且CD⊥BE,那么a:b:c=( 。
A.1:2:3B.3:2:1C.
3
2
:1
D.1:
2
3
可以用建立直角坐標(biāo)系來(lái)做.以三角形BC所在的邊為x軸,以AC所在的邊為y軸,C點(diǎn)為原點(diǎn)建立直角坐標(biāo)系.
可得,C(0,0),B(a,0),A(0,b).
∵CD和BE為中線,
∴D,E為中點(diǎn),則D(
a
2
b
2
),E(0,
b
2
).
則直線BE的斜率是:
-
b
2
a
=-
b
2a
;
直線CD的斜率是:
b
2
a
2
=
b
a

∵CD與BE垂直,所以CD與BE所在直線的斜率的乘積為-1,即-
b
2a
b
a
=-1.
∴b2=2a2
∴a:b=1:
2

又∵a2+b2=c2
∴a:b:c=1:
2
3

故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

兩根電線桿AB、CD,AB=5m,CD=3m,它們的底部相距8m,現(xiàn)在要在兩根電線桿底端之間(線段BD上)選一點(diǎn)E,由E分別向兩根電線桿頂端拉鋼索AE、CE.若使鋼索AE與CE相等,那么點(diǎn)E應(yīng)該選在距點(diǎn)B多少米處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,則網(wǎng)格上的三角形ABC中,邊長(zhǎng)為無(wú)理數(shù)的邊數(shù)是______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求證:△BCE≌△DCF;
(2)若AB=15,AD=7,BC=5,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=
6
.求AE的長(zhǎng)和△ADE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在由24個(gè)邊長(zhǎng)都為1的小正三角形組成的正六邊形網(wǎng)格中,以格點(diǎn)P為直角頂點(diǎn)作格點(diǎn)直角三角形(即頂點(diǎn)均在格點(diǎn)上的三角形),請(qǐng)你寫(xiě)出所有可能的直角三角形斜邊的長(zhǎng)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一個(gè)長(zhǎng)為10米的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8米,如果梯子的頂端下滑1米,那么梯子的底端向右滑動(dòng)的距離d米,那么d滿足(  )
A.d=1B.d<1C.1<d<1.1D.1.1<d<1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示).如果大正方形的面積是49,小正方形的面積4,直角三角形的兩直角邊長(zhǎng)分別為a,b,那么下列結(jié)論正確的有( 。﹤(gè).
(1)b-a=2,(2)a2+b2=49,(3)4+2ab=49,(4)a+b=
94
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等腰三角形的兩邊長(zhǎng)分別為41cm和18cm,則該三角形的面積為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案