【題目】在平面直角坐標(biāo)系中,拋物線的頂點為,直線與拋物線交于點(點在點的左側(cè)).
(1)求點坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記線段及拋物線在兩點之間的部分圍成的封閉區(qū)域(不含邊界)記為.
①當(dāng)時,結(jié)合函數(shù)圖象,直接寫出區(qū)域內(nèi)的整點個數(shù);
②如果區(qū)域內(nèi)有2個整點,請求出的取值范圍.
【答案】(1)A(a,0);(2)①4;②
【解析】
(1)根據(jù)拋物線頂點坐標(biāo)求法求解即可;
(2)①畫出圖像,根據(jù)圖像以及整點的概念求解即可;
②由①推出a<0,分別求出有2個整點和3個整點時a的取值,再得出取值范圍.
解:(1)∵拋物線的解析式為:,
∴可得頂點坐標(biāo)為:A(a,0);
(2)①∵a=0,
∴拋物線表達(dá)式為:,
令,
解得:x1=,x2=,
∵,,
∴區(qū)域內(nèi)的整點有(0,1),(0,2),(1,2),(1,3)共4個整點;
②由①可知當(dāng)a=0時有4個整點,
當(dāng)a>0時,對稱軸在y軸右側(cè),此時有更多整點,
∴a<0,
∵拋物線的解析式為:,
∴拋物線的頂點在x軸,開口向上,
當(dāng)拋物線在直線y=x+3左側(cè)且兩者相切時,沒有整點,
當(dāng)拋物線向右平移時,第一個整點為(-1,1),代入拋物線,
,
解得:a=-2或0(舍),
第二個整點為(0,2),代入拋物線,
,
解得:a=(舍)或,
第三個整點為(0,1),代入拋物線,
,
解得:a=1(舍)或-1,
綜上:a的取值范圍是:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,P為BA延長線上一點,點C在⊙O上,連接PC,D為半徑OA上一點,PD=PC,連接CD并延長交⊙O于點E,且E是的中點.
(1)求證:PC是⊙O的切線;
(2)求證:CDDE=2ODPD;
(3)若AB=8,CDDE=15,求PA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售10臺A型和20臺B型加濕器的利潤為2500元,銷售20臺A型和10臺B型加濕器的利潤為2000元
(1)求每臺A型加濕器和B型加濕器的銷售利潤;
(2)該商店計劃一次購進(jìn)兩種型號的加濕器共100臺,其中B型加濕器的進(jìn)貨量不超過A型加濕器的2倍,設(shè)購進(jìn)A型加濕器x臺.這100臺加濕器的銷售總利潤為y元
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店應(yīng)怎樣進(jìn)貨才能使銷售總利潤最大?
(3)實際進(jìn)貨時,廠家對A型加濕器出廠價下調(diào)m(0<m<100)元,且限定商店最多購進(jìn)A型加濕器70臺,若商店保持兩種加濕器的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺加濕器銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一大、一小兩個等腰直角三角形拼在一起,,連接.
(1)如圖1,若三點在同一條直線上,則與的關(guān)系是 ;
(2)如圖2,若三點不在同一條直線上,與相交于點,連接,猜想之間的數(shù)量關(guān)系,并給予證明;
(3)如圖3,在(2)的條件下作的中點,連接,直接寫出與之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明同學(xué)設(shè)計的“過直線外一點作已知直線的平行線“的尺規(guī)作圖過程.
已知:如圖,直線和直線外一點.
求作:直線,使直線直線.
作法:如圖,
①在直線上任取一點,作射線;
②以為圓心,為半徑作弧,交直線于點,連接;
③以為圓心,長為半徑作弧,交射線于點;分別以為圓心,大于長為半徑作弧,在的右側(cè)兩弧交于點;
④作直線;
所以直線就是所求作的直線.
根據(jù)上述作圖過程,回答問題:
(1)用直尺和圓規(guī),補(bǔ)全圖中的圖形;
(2)完成下面的證明:
證明:由作圖可知平分,
.
又,
.(_______________________________)(填依據(jù)1).
,
.
,∴直線直線.(______________________)(填依據(jù)2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育行政部門為了解初中學(xué)生參加綜合實踐活動的情況,隨機(jī)抽取了本市初一、初二、初三年級各名學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如圖所示,請你根據(jù)圖中的信息回答問題.
(1)在被調(diào)查的學(xué)生中,參加綜合實踐活動的有多少人,參加科技活動的有多少人;
(2)如果本市有萬名初中學(xué)生,請你估計參加科技活動的學(xué)生約有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖部分信息如下:
(1)本次比賽參賽選手共有 人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為 ;
(2)賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?/span>78分,試判斷他能否獲獎,并說明理由;
(3)成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年3月“停課不停學(xué)”期間,某校采用簡單隨機(jī)抽樣的方式調(diào)查本校學(xué)生參加第一天線上學(xué)習(xí)的時長,將收集到的數(shù)據(jù)制成不完整的頻數(shù)分布表和扇形圖,如下所示:
組別 | 學(xué)習(xí)時長(分鐘) | 頻數(shù)(人) |
第1組 | x≤40 | 3 |
第2組 | 40<x≤60 | 6 |
第3組 | 60<x≤80 | m |
第4組 | 80<x≤100 | 18 |
第5組 | 100<x≤120 | 14 |
(1)求m,n的值;
(2)學(xué)校有學(xué)生2400人,學(xué)校決定安排老師給““線上學(xué)習(xí)時長”在x≤60分鐘范圍內(nèi)的學(xué)生打電話了解情況,請你根據(jù)樣本估計學(xué)校學(xué)生“線上學(xué)習(xí)時長”在x≤60分鐘范圍內(nèi)的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com