【題目】為創(chuàng)建國(guó)家文明城市,我市特在每個(gè)紅綠燈處設(shè)置了文明監(jiān)督崗,文明勸導(dǎo)員老牛某工作日在市中心的一個(gè)十字路口,對(duì)闖紅燈的人數(shù)進(jìn)行統(tǒng)計(jì).根據(jù)上午7:00~12:00中各時(shí)間段闖紅燈的人數(shù)制作了如圖所示的尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)該工作日7:00~12:00共有人闖紅燈?
(2)①補(bǔ)全條形統(tǒng)計(jì)圖, ②計(jì)算扇形統(tǒng)計(jì)圖中10~11點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù).
(3)該工作日7:00~12:00,各時(shí)間段闖紅燈的人數(shù)的方差是
(4)請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息向交通管理部門(mén)提出一條合理化建議.
【答案】
(1)100
(2)根據(jù)題意得:7﹣8點(diǎn)的人數(shù)為100×20%=20(人),8﹣9點(diǎn)的人數(shù)為100×15%=15(人),
9﹣10點(diǎn)所占的百分比是: ×100%=10%,10﹣11點(diǎn)占1﹣(20%+15%+10%+40%)=15%,人數(shù)為100×15%=15(人),補(bǔ)全圖形,如圖所示:
10~11點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)為15%×360°=54°,故答案為:54°;
(3)110
(4)解:加強(qiáng)對(duì)11~12點(diǎn)時(shí)段的交通管理和交通安全教育.
【解析】解:(1.)根據(jù)題意得:40÷40%=100(人),則這一天上午7:00~12:00這一時(shí)間段共有100人闖紅燈,所以答案是:100; (3.)根據(jù)題意得:各時(shí)間段闖紅燈的人數(shù)的平均數(shù)是(20+15+10+15+40)÷5=20(人),則方差為 ×[(20﹣20)2+(15﹣20)2+(10﹣20)2+(15﹣20)2+(40﹣20)2]=110,所以答案是:110;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計(jì)圖的相關(guān)知識(shí),掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況,以及對(duì)條形統(tǒng)計(jì)圖的理解,了解能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)兩條直線相交于一點(diǎn)有2組不同的對(duì)頂角;
(2)三條直線相交于一點(diǎn)有6組不同的對(duì)頂角;
(3)四條直線相交于一點(diǎn)有12組不同的對(duì)頂角;
(4)n條直線相交于同一點(diǎn)有___________組不同對(duì)頂角.(如圖所示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京奧運(yùn)會(huì)開(kāi)幕前,某體育用品商場(chǎng)預(yù)測(cè)某品牌運(yùn)動(dòng)服能夠暢銷,就用32000元購(gòu)進(jìn)了一批這種運(yùn)動(dòng)服,上市后很快脫銷,商場(chǎng)又用68 000元購(gòu)進(jìn)第二批這種運(yùn)動(dòng)服,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.
(1)該商場(chǎng)兩次共購(gòu)進(jìn)這種運(yùn)動(dòng)服多少套?
(2)如果這兩批運(yùn)動(dòng)服每套的售價(jià)相同,且全部售完后總利潤(rùn)率不低于20%,那么每套售價(jià)至少是多少元?(利潤(rùn)率=×100%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD與EF相交.
(1)圖中∠1和∠2分別在直線AB,CD的同_______,并且都在直線EF的_____,具有這樣位置關(guān)系的一對(duì)角叫做______;
(2)圖中∠2和∠8都在直線AB,CD____,并且分別在直線EF的___,具有這樣位置關(guān)系的一對(duì)角叫做_____;
(3)圖中∠2和∠7都在直線AB,CD____,且都在直線EF的____,具有這樣位置關(guān)系的一對(duì)角叫做______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x+m(m>0)與x軸交于點(diǎn)A(-2,0),直線y=-x+n(n>0)與x軸、y軸分別交于B、C兩點(diǎn),并與直線y=2x+m(m>0)相交于點(diǎn)D,若AB=4.
(1)求點(diǎn)D的坐標(biāo);
(2)求出四邊形AOCD的面積;
(3)若E為x軸上一點(diǎn),且△ACE為等腰三角形,直接寫(xiě)出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:
如圖①,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F(xiàn)分別是BC、CD上的點(diǎn),且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
(1)小明同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是;
(2)探索延伸:
如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF= ∠BAD,上述結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由;
(3)實(shí)際應(yīng)用:
如圖③,在某次軍事演習(xí)中,艦艇甲在指揮中心O北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn),2小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,當(dāng)∠EOF=70°時(shí),兩艦艇之間的距離是海里.
(4)能力提高:
如圖④,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,則MN的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樹(shù)AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹(shù)的頂點(diǎn)A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹(shù)AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=45°,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且∠ADE=∠AED,連結(jié)DE.
(1)當(dāng)∠BAD=60°,求∠CDE的度數(shù);
(2)當(dāng)點(diǎn)D在BC(點(diǎn)B、C除外)邊上運(yùn)動(dòng)時(shí),試寫(xiě)出∠BAD與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com