如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線BD、AC交于點(diǎn)O.將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)分別交BC、AD于點(diǎn)E、F.
(1)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,AF與CE總保持相等;
(2)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能請(qǐng)說(shuō)明理由;如果能,求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度.
分析:(1)根據(jù)平行四邊形的對(duì)邊平行可得AD∥BC,對(duì)角線互相平分可得OA=OC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠1=∠2,然后利用“角邊角”證明△AOF和△COE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可得到AF=CE;
(2)根據(jù)垂直的定義可得∠BAO=90°,然后求出∠BAO=∠AOF,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得AB∥EF,然后根據(jù)平行四邊形的對(duì)邊平行求出AF∥BE,再根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形證明;
(3)根據(jù)(1)的結(jié)論可得AF=CE,再求出DF∥BE,DF=BE,然后根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形求出四邊形BEDF平行四邊形,再求出對(duì)角線互相垂直的平行四邊形是菱形可得EF⊥BD時(shí),四邊形BEDF是菱形;根據(jù)勾股定理列式求出AC=2,再根據(jù)平行四邊形的對(duì)角線互相平分求出AO=1,然后求出∠AOB=45°,再根據(jù)旋轉(zhuǎn)的定義求出旋轉(zhuǎn)角即可.
解答:解:(1)在?ABCD中,AD∥BC,OA=OC,
∴∠1=∠2,
在△AOF和△COE中,
∠1=∠2
OA=OC
∠3=∠4
,
∴△AOF≌△COE(ASA),
∴AF=CE;

(2)由題意,∠AOF=90°(如圖2),
又∵AB⊥AC,
∴∠BAO=90°,
∠AOF=90°,
∴∠BAO=∠AOF,
∴AB∥EF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
即:AF∥BE,
∵AB∥EF,AF∥BE,
∴四邊形ABEF是平行四邊形;

(3)當(dāng)EF⊥BD時(shí),四邊形BEDF是菱形(如圖3).
∵?ABCD,AF=CE,
∴AD∥BC,AD=BC,
∴DF∥BE,DF=BE,
∴四邊形BEDF是平行四邊形,
又∵EF⊥BD,
∴?BEDF是菱形,
∵AB⊥AC,
∴在△ABC中,∠BAC=90°,
∴BC2=AB2+AC2,
∵AB=1,BC=
5
,
∴AC=
BC2-AB2
=
5
2
-12
=2,
∵四邊形ABCD是平行四邊形,
∴OA=
1
2
AC=
1
2
×2=1,
∵在△AOB中,AB=AO=1,∠BAO=90°,
∴∠1=45°,
∵EF⊥BD,
∴∠BOF=90°,
∴∠2=∠BOF-∠1=90°-45°=45°,
即:旋轉(zhuǎn)角為45°.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),平行四邊形的判定與性質(zhì),全等三角形的判定與性質(zhì),菱形的判定與性質(zhì),綜合題,但難度不大,熟練掌握平行四邊形,菱形的聯(lián)系與區(qū)別是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點(diǎn),則圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC,BD相交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn),下列說(shuō)法不正確的是( 。
A、當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過(guò)程中,線段AF與EC總相等
C、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形BEDF一定為菱形
D、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點(diǎn)E是AD的中點(diǎn),延長(zhǎng)CE交BA的延長(zhǎng)線于點(diǎn)F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•浙江)如圖,?ABCD中,對(duì)角線AC和BD交于點(diǎn)O,過(guò)O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長(zhǎng)為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案