【題目】如圖,AB∥EF,∠BCD=135°,∠FDC=85°,則∠B+∠F的度數(shù)為(
A.38°
B.40°
C.55°
D.60°

【答案】B
【解析】解:∵∠BCD與∠FCD分別是△ABC與△DEF的外角,∠BCD=135°,∠FDC=85°, ∴∠BCD=∠B+∠BAC=135°,∠FDC=∠F+∠DEF=85°,
∴∠B+∠BAC+∠F+∠DEF=135°+85°=220°.
∵AB∥EF,
∴∠BAC+∠DEF=180°,
∴∠B+∠F=220°﹣180°=40°.
故選B.
【考點(diǎn)精析】本題主要考查了平行線的性質(zhì)的相關(guān)知識點(diǎn),需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國第一艘航母“遼寧艦”最大排水量為67500噸,67500這個數(shù)用科學(xué)記數(shù)法表示這個數(shù)字是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖2,AB=AC,BEACE,CFABF,BECF交于D,則以下結(jié)論:①△ABE≌△ACF②△BDF≌△CDE;③點(diǎn)D在∠BAC的平分線上.正確的是( 。

A. B. C. ①② D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下四個結(jié)論:

①一個多邊形的內(nèi)角和為900°,從這個多邊形同一個頂點(diǎn)可畫的對角線有4條;

②三角形的一個外角等于兩個內(nèi)角的和;

③任意一個三角形的三條高所在直線的交點(diǎn)一定在三角形的內(nèi)部;

④△ABC中,若∠A=2B=3C,則ABC為直角三角形.

其中正確的是   (填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計算:8x4y2÷x3y×2x.(2)計算:(2x5)( 3x7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在梯形ABCD中,ADBC,AB=AD=5,tanDBC=.點(diǎn)E為線段BD上任意一點(diǎn)(點(diǎn)E與點(diǎn)B,D不重合),過點(diǎn)E作EFCD,與BC相交于點(diǎn)F,連接CE.設(shè)BE=x,y=

(1)求BD的長;

(2)如果BC=BD,當(dāng)DCE是等腰三角形時,求x的值;

(3)如果BC=10,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a3am=a8 , 則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程: 如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(),
∴∠2=∠CGD(等量代換).
∴CE∥BF().
∴∠=∠C().
又∵∠B=∠C(已知),
∴∠=∠B(等量代換).
∴AB∥CD().

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:

(1)請?zhí)顚懴卤?

平均數(shù)

方差

中位數(shù)

命中9環(huán)及以上的次數(shù)

7

1.2

1

5.4

(2)請從下列四個不同的角度對這次測試結(jié)果進(jìn)行分析:

從平均數(shù)和方差相結(jié)合看;

從平均數(shù)和中位數(shù)相結(jié)合看(分析誰的成績好些);

從平均數(shù)和命中9環(huán)以上的次數(shù)相結(jié)合看(分析誰的成績好些);

從折線圖上兩人射擊命中環(huán)數(shù)的走勢看(分析誰更有潛力).

查看答案和解析>>

同步練習(xí)冊答案
<nobr id="br5a3"><span id="br5a3"></span></nobr>
  • <pre id="br5a3"></pre>
    <small id="br5a3"><sup id="br5a3"></sup></small>