【題目】已知△ABC在正方形網(wǎng)格中的位置如圖所示,則點P是△ABC的( )
A.外心
B.內(nèi)心
C.三條高線的交點
D.三條中線的交點
【答案】D
【解析】解:A、三角形的外心是三角形的三條垂直平分線的交點,故錯誤; B、三角形的內(nèi)心是三角形的三條角平分線的交點,故錯誤;
C、三條高線的交點為三角形的垂心,故錯誤;
D、三角形的重心是三角形的三條中線的交點,故正確;
故選D.
【考點精析】利用三角形的“三線”和勾股定理的概念對題目進(jìn)行判斷即可得到答案,需要熟知1、三角形角平分線的三條角平分線交于一點(交點在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(交點在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為3的正六邊形鐵絲框ABCDEF變形為以點A為圓心,AB為半徑的扇形(忽略鐵絲的粗細(xì)).則所得扇形AFB(陰影部分)的面積為( )
A.6π
B.18
C.18π
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.
(1)若∠MOE=27°,求∠AOC的度數(shù);
(2)當(dāng)∠BOD=x°(0<x<90)時,求∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,AC=BC,以BC為直徑的⊙O分別與AB,AC相交于點D,E,過點D作DF⊥AC,垂足為點F.
(1)求證:DF是⊙O的切線;
(2)分別延長CB,F(xiàn)D,相交于點G,∠A=60°,⊙O的半徑為6,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.
(1)求該店有客房多少間?房客多少人?
(2)假設(shè)店主李三公將客房進(jìn)行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,點D在⊙O外(與點C在AB同側(cè)),∠ABD=90°,下列結(jié)論:①sinC>sinD;②cosC>cosD;③tanC>tanD,正確的結(jié)論為( )
A.①②
B.②③
C.①②③
D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上的一個動點(不與B、D重合),連結(jié)AP,過點B作直線AP的垂線,垂足為H,連結(jié)DH.若正方形的邊長為4,則線段DH長度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級為了開展球類興趣小組,需要購買一批足球和籃球﹒若購買3個足球和5個籃球需580元;若購買4個足球和3個籃球需480元.
(1)求出足球和籃球的的單價分別是多少?
(2)已知該年級決定用800元購進(jìn)這兩種球,若兩種球都要有,請問有幾種購買方案,并請加以說明﹒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點D,以AD為邊作等邊△ADE,延長ED交BC于點F,BC=2 ,則圖中陰影部分的面積為 . (結(jié)果不取近似值)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com