【題目】如圖,一個長方形盒子的長、寬、高分別是4cm,4cm6cm

1)一只螞蟻想從盒底的點A沿盒的表面爬到盒頂?shù)狞cB,請你幫螞蟻設(shè)計一條最短的路線,螞蟻要爬行的最短路線是多少?

2)若將一根木棒放進盒子里并能蓋上蓋子,則能放入改盒子里的木棒的最大長是多少cm?(結(jié)果可保留根號)

【答案】110cm;(2cm

【解析】

1)將長方形的盒子按照不同的方式展開,得到不同的矩形,利用勾股定理求出AB的長,最短的即為所求.

2)利用勾股定理求出AC的長,再求出AB的長即可.

1)分三種情況:

①如圖1,AC=4+4=8,BC=6

由勾股定理得:

②如圖2AD=4,BD=6+4=10

由勾股定理得:

②如圖3,AE=4,AF=6+4=10

由勾股定理得:

∴螞蟻要爬行的最短路線是10cm..

2)連接ACAB,如圖

中,由勾股定理得,

中,由勾股定理得,

答:能放入改盒子里的木棒的最大長是多少cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,,.

(1)如圖1,若,于點,軸交于點,則_____.

(2)如圖2,若,的平分線于點,過上一點作,交于點,的高,探究的數(shù)量關(guān)系;

(3)如圖3,在(1)的條件下,上點滿足,直線軸于點,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 PQ 上有一點 O,點 A 為直線外一點,連接 OA,在直線 PQ 上找一點 B,使得△AOB 是等腰三角形,這樣的點 B _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明設(shè)計的“分別以兩條已知線段為腰和底邊上的高作等腰三角形”的尺規(guī)作圖過程.

已知:線段 a, b

求作:等腰△ABC,使線段 a 為腰,線段 b 為底邊 BC 上的高. 作法:如圖,

①畫直線 l,作直線 ml,垂足為 P;

②以點 P 為圓心,線段 b 的長為半徑畫弧,交直線 m 于點 A;

③以點 A 為圓心,線段 a 的長為半徑畫弧,交直線 l B,C 兩點;

④分別連接 AB AC;

所以△ABC 就是所求作的等腰三角形. 根據(jù)小明設(shè)計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵ = ,

∴△ABC 為等腰三角形( )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)如圖,已知拋物線yx2bxc經(jīng)過A(-1,0),B(3,0)兩點.

(1)求拋物線的解析式和頂點坐標(biāo);

(2)當(dāng)0<x<3時,求y的取值范圍;

(3)點P為拋物線上一點,若SPAB=10,求出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=DAE=90°,連結(jié)CEAD于點F,連結(jié)BDCE于點G,連結(jié)BE.下列結(jié)論:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=AEB;S四邊形BCDEBD·CE;BC2+DE2=BE2+CD2.其中正確的結(jié)論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從貨場出發(fā),向東走2千米到達批發(fā)部,繼續(xù)向東走1.5千米到達商場,又向西走5.5千米到達超市,最后回到貨場.

1)以貨場為原點,以東為正方向,用一個單位長度表示1千米,你能在數(shù)軸上分別表示出貨場,批發(fā)部,商場,超市的位置嗎?

2)超市距離貨場多遠?

3)此貨車每千米耗油0.1升,每升汽油6.20元,請計算此貨車一共需要多少汽油費?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在抗洪搶險中,人民解放軍的沖鋒舟沿南北方向的河流搶救災(zāi)民.約定向北為正方向,某沖鋒舟從 A 地出發(fā),到達B地的一趟的航程記錄如下(單位:千米):

(1)B地在A地的何方?相距多少千米?

(2)若沖鋒舟每千米耗油升,油箱的容量為29 升,則途中至少需要補充多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為12,點E在邊AB上,BE=8,過點EEFBC,分別交BD、CDG、F兩點.若點P、Q分別為DG、CE的中點,則PQ的長為_____

查看答案和解析>>

同步練習(xí)冊答案