如圖所示,△ABC是等邊三角形,D是BC邊上一點(diǎn),△CDE也是等邊三角形,試?yán)眯D(zhuǎn)的思想說(shuō)明線段AD與BE的大小關(guān)系.

【答案】分析:觀察圖形,由于△ABC、△CDE都是等邊三角形,△BCE可看作△ACD繞C點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到的,由此可得,△BCE≌△ACD,故AD=BE.
解答:解:AD=BE.
理由:∵△ABC、△CDE都是等邊三角形,
∴BC=AC,CE=CD,∠BCE=∠ACD=60°,
∴△BCE≌△ACD(SAS),
故AD=BE.
點(diǎn)評(píng):本題考查旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖所示,△ABC是等邊三角形,延長(zhǎng)BC至E,延長(zhǎng)BA至F,使AF=BE,連接CF、EF,過(guò)點(diǎn)F作直線FD⊥CE于D,試發(fā)現(xiàn)∠FCE與∠FEC的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖所示,△ABC是正三角形,△A1B1 C1的三條邊A1B1、BlC1、C1A1交△ABC各邊分別于C2、C3,A2、A3,B2、B3.已知A2C3=C2B3=B2A3,且C2C32+B2B32=A2A32.請(qǐng)你證明:AlB1⊥C1A1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,△ABC是邊長(zhǎng)為a的正三角形紙張,今在各角剪去一個(gè)三角形,使得剩下的六邊形PQRSTU為正六邊形,則此正六邊形的周長(zhǎng)為何(  )
A、2a
B、3a
C、
3
2
a
D、
9
4
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖所示,△ABC是等邊三角形,AQ=PQ,PR⊥AB于R點(diǎn),PS⊥AC于S點(diǎn),PR=PS,則四個(gè)結(jié)論:①點(diǎn)P在∠A的平分線上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃陂區(qū)模擬)如圖所示,△ABC是⊙O的內(nèi)接正三角形,四邊形DEFG是⊙O的內(nèi)接正方形,EF∥BC,則∠AOF為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案