如圖,∠A=∠D,∠C=∠F,要使△ABC≌△DEF,還要增加什么條件?試說(shuō)明你的理由.(只寫(xiě)一種即可,但須注明理由)
考點(diǎn):全等三角形的判定
專題:開(kāi)放型
分析:已知兩個(gè)三角形的對(duì)應(yīng)角相等,所以根據(jù)全等三角形的判定定理ASA,AAS來(lái)?xiàng)l件條件.
解答:解:①可以添加AC=DF.理由如下:
∵在△ABC與△DEF中,
∠A=∠D
AC=DF
∠C=∠F

∴△ABC≌△DEF(ASA);
②可以添加AB=DE(或BC=EF).理由如下:
∵在△ABC與△DEF中,
∠C=∠F
∠A=∠D
AB=DE

∴△ABC≌△DEF(AAS).
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一組數(shù)據(jù)x1,x2,x3,…xn的極差是3,則另一組數(shù)據(jù)x1+1,x2+1,x3+1,…xn+1的極差是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1-
3
的絕對(duì)值是(  )
A、1-
3
B、
3
-1
C、-1-
3
D、1+
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列敘述正確的是( 。
A、無(wú)限小數(shù)是無(wú)理數(shù)
B、無(wú)理數(shù)是無(wú)限小數(shù)
C、兩個(gè)無(wú)理數(shù)的和一定是無(wú)理數(shù)
D、兩個(gè)無(wú)理數(shù)之和一定是有理數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:2sin60°-tan60°+cos230°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.
(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.則DE•CD
 
CF•AD(填“<”或“=”或“>”);
(2)如圖2,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得DE•CD=CF•AD成立?并證明你的結(jié)論;
(3)如圖3,若BA=BC=3,DA=DC=4,∠BAD=90°,DE⊥CF.則
DE
CF
的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)在數(shù)軸上表示以下六個(gè)數(shù):2,-1.5,0,-3
1
2
,4.5,
1
2
;
(2)把這六個(gè)數(shù)按從小到大的順序,用“<”號(hào)連接起來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰梯形ABCD置于平面直角坐標(biāo)系中,CD∥x軸,AB 在x軸上,AC平分∠DAB,直線AD的解析式為y=
4
3
x+4

(1)求點(diǎn)C的坐標(biāo);
(2)動(dòng)點(diǎn)P分別從點(diǎn)A出發(fā),沿AB向終點(diǎn)B運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,過(guò)點(diǎn)P作x軸的垂線,并交直線AC于點(diǎn)F,過(guò)F點(diǎn)作x軸的平行線交直線BC于點(diǎn)M,設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,設(shè)線段FM的長(zhǎng)度為y,求y與t的函數(shù)關(guān)系式(請(qǐng)直接寫(xiě)出自變量t的取值范圍);
(3)在(2)的條件下,設(shè)△PFM的外接圓的圓心為K,連接FM、KM,當(dāng)t為何值時(shí),直線PM與KF所夾銳角正切值為
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰三角形ABC中,AB=AC,AD平分∠BAC,點(diǎn)C在AE的垂直平分線上,若DE=10cm,則AB+BD=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案