【題目】如圖,點(diǎn)Aa,b)是雙曲線yx0)上的一點(diǎn),點(diǎn)Px軸負(fù)半軸上的一動(dòng)點(diǎn),ACy軸于C點(diǎn),過(guò)AADx軸于D點(diǎn),連接APy軸于B點(diǎn).

1)△PAC的面積是   ;

2)當(dāng)a2,P點(diǎn)的坐標(biāo)為(﹣2,0)時(shí),求△ACB的面積;

3)當(dāng)a2,P點(diǎn)的坐標(biāo)為(x0)時(shí),設(shè)△ACB的面積為S,試求Sx之間的函數(shù)關(guān)系.

【答案】(1)4;(2)2;(3)S

【解析】

1)由點(diǎn)Aa,b)是雙曲線y=x0)上,得到ab=8,根據(jù)反比例函數(shù)系數(shù)k的幾何意義,就看得到PAC的面積=ADAC=ab=4;

2)先求出直線AP的解析式為y=x+2,得到B0,2),即可求出SABC=ACBC=×2×2=2;

3)求出直線AP的解析式為,得到B0,),代入三角形的面積公式即可求出S=×2×=

解:(1)∵點(diǎn)Aab)是雙曲線y=x0)上,

ab8

ACy軸于C點(diǎn),ADx軸于D點(diǎn),

ACa,ADb,

∴△PAC的面積=ADACab4;

故答案為:4;

2)∵a2,

b4

AC2,AD4,A2,4),

設(shè)直線AP的解析式為ykx+b

,

∴直線AP的解析式為yx+2,

B0,2),

S△ABCACBC2

3)同理直線AP的解析式為,

B0),

BC

S

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在噴水池的中心A處豎直安裝一個(gè)水管AB,水管的頂端安有一個(gè)噴水池,使噴出的拋物線形水柱在與池中心A的水平距離為1m處達(dá)到最高點(diǎn),高度為3m,水柱落地點(diǎn)D離池中心A3m,以水平方向?yàn)?/span>軸,建立平面直角坐標(biāo)系,若選取點(diǎn)為坐標(biāo)原點(diǎn)時(shí)的拋物線的表達(dá)式為,則選取點(diǎn)為坐標(biāo)原點(diǎn)時(shí)的拋物線表達(dá)式為______,水管的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸的負(fù)半軸、y軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過(guò)點(diǎn)M的反比例函數(shù)y=(x0)的圖象交AB于點(diǎn)N,的圖象交AB于點(diǎn)N, S矩形OABC=32,tanDOE=,,則BN的長(zhǎng)為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問(wèn)題:

已知:如圖1ABC,尺規(guī)作圖:求作∠APC=∠ABC.

甲、乙兩位同學(xué)的主要作法如下:

甲同學(xué)的主要作法,如圖甲:①作∠CAD=∠ACB,且點(diǎn)D與點(diǎn)BAC的異側(cè);②在射線AD上截取APCB,連結(jié)CP.所以∠APC=∠ABC.

乙同學(xué)的主要作法,如圖乙:①作線段BC的垂直平分線a;②作線段AB的垂直平分線b,與直線a交于點(diǎn)O;③以點(diǎn)O為圓心,OA為半徑作⊙O;④在上取一點(diǎn)P(點(diǎn)P不與點(diǎn)A,BC重合),連結(jié)APCP.所以∠ACP=∠ABC.

老師說(shuō):兩位同學(xué)的作法都是正確的.”

請(qǐng)你選擇一位同學(xué)的作法,并說(shuō)明這位同學(xué)作圖的依據(jù).

我選擇的是_________的作法,這樣作圖的依據(jù)是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在RtABC中,∠B90°AB,BC3,在BC邊上取兩點(diǎn)E,F(點(diǎn)E在點(diǎn)F左側(cè)),以EF為邊作等邊三角形DEF,使頂點(diǎn)DE在邊AC異側(cè),DE,DF分別交AC于點(diǎn)G,H,連結(jié)AD.

1)如圖1,求證:DEAC;

2)如圖2,若∠DAC30°,DEF的邊EF在線段BC上移動(dòng).寫出DHBE的數(shù)量關(guān)系并證明;

3)若30°<∠DAC60°,DEF的周長(zhǎng)為m,則m的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為2a的正方形ABCD,對(duì)角線ACBD交于點(diǎn)Q,對(duì)于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱點(diǎn)P為正方形ABCD關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C1,﹣1),D1,1.

1)在,,中,正方形ABCD關(guān)聯(lián)點(diǎn)_____;

2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD關(guān)聯(lián)點(diǎn),求m的取值范圍;

3)若將正方形ABCD沿x軸平移,設(shè)該正方形對(duì)角線交點(diǎn)Q的橫坐標(biāo)是n,直線x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD關(guān)聯(lián)點(diǎn),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊ABC外側(cè)作直線AM,點(diǎn)C關(guān)于AM的對(duì)稱點(diǎn)為D,連接BDAM于點(diǎn)E,連接CE,CD,AD.

1)依題意補(bǔ)全圖1,并求∠BEC的度數(shù);

2)如圖2,當(dāng)∠MAC30°時(shí),判斷線段BEDE之間的數(shù)量關(guān)系,并加以證明;

3)若<∠MAC120°,當(dāng)線段DE2BE時(shí),直接寫出∠MAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是3,延長(zhǎng)AB至點(diǎn)P、延長(zhǎng)BC至點(diǎn)Q,使BPCQ,連接AQ,DP交于點(diǎn)O,相QCD于點(diǎn)FDPBC于點(diǎn)E,連接AE

1)求證:AQDP;

2)求證:SAODS四邊形OECF

3)當(dāng)BP1時(shí),請(qǐng)直接寫出OEOA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是⊙的直徑,弦,點(diǎn)在弧上(不含端點(diǎn)), 連接

1)圖中有無(wú)和相等的線段,并證明你的結(jié)論.

2)求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案