【題目】只有1和它本身兩個(gè)因數(shù)且大于1的正整數(shù)叫做素?cái)?shù).我國數(shù)學(xué)家陳景潤哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)都表示為兩個(gè)素?cái)?shù)的和”.如20=3+17.
(1)從7、11、19、23這4個(gè)素?cái)?shù)中隨機(jī)抽取一個(gè),則抽到的數(shù)是7的概率是 ;
(2)從7、11、19、23這4個(gè)素?cái)?shù)中隨機(jī)抽取1個(gè)數(shù),再從余下的3個(gè)數(shù)中隨機(jī)抽取1個(gè)數(shù),用畫樹狀圖或列表的方法,求抽到的兩個(gè)素?cái)?shù)之和等于30的概率.
【答案】(1);(2)抽到兩個(gè)素?cái)?shù)之和等于30的概率是
【解析】
(1)四個(gè)數(shù)中,抽到7只有一種可能,根據(jù)概率公式直接計(jì)算即可得;
(2)畫樹狀圖得到所有等可能的情況,然后再從中找出符合條件的結(jié)果數(shù),利用概率公式進(jìn)行計(jì)算即可.
(1)總共有四個(gè)數(shù),7是其中的一個(gè)數(shù),
所以從7、11、19、23這4個(gè)素?cái)?shù)中隨機(jī)抽取一個(gè),抽到的數(shù)是7的概率是1÷4=,
故答案為:;
(2)畫樹狀圖如圖所示:
共有12各等可能的結(jié)果,其中抽到兩個(gè)數(shù)的和為30的有4種可能,
∴抽到兩個(gè)素?cái)?shù)之和等于30的概率是4÷12=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠D=30°,AB<AD.
(1)在AD邊上求作一點(diǎn)P,使點(diǎn)P到邊AB,BC的距離相等;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)在(1)的條件下,連接BP,若AB=2,求△ABP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列正多邊形都滿足BA1=CB1,在正三角形中,我們可推得:∠AOB1=60°;在正方形中,可推得:∠AOB1=90°;在正五邊形中,可推得:∠AOB1=108°,依此類推在正八邊形中,AOB1=____°,在正n(n≥3)邊形中,∠AOB1=____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC是等腰直角三角形,在兩腰AB、AC外側(cè)作兩個(gè)等邊三角形ABD和ACE,AM和AN分別是等邊三角形ABD和ACE的角平分線,連接CM、BN,CM與AB交于點(diǎn)P.
(1)求證:CM=BN;
(2)如圖②,點(diǎn)F為角平分線AN上一點(diǎn),且∠CPF=30°,求證:△APF∽△AMC;
(3)在(2)的條件下,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視機(jī)廠要印制產(chǎn)品宣傳材料甲印刷廠提出:每份材料收1元印制費(fèi),另需收取所有印制材料的制版費(fèi)1500元;乙印刷廠提出:每份材料收2.5元印制費(fèi),不收制版費(fèi).設(shè)該電視廠在同一個(gè)印刷廠一次印的數(shù)量為份.
(1)根據(jù)題意填表:
一次印制數(shù)量(份) | 300 | 500 | 1500 | … |
甲印刷廠花費(fèi)(元) | 2000 | … | ||
乙印刷廠花費(fèi)(元) | 1250 | … |
(2)設(shè)在甲印刷廠花費(fèi)元,在乙印刷廠花費(fèi)元,分別求,關(guān)于的函數(shù)解析式;
(3)根據(jù)題意填空:
①若電視廠在甲印刷廠和在乙印刷廠一次印制宣傳材料的數(shù)量相同,且花費(fèi)相同,則該電視廠在同一個(gè)印刷廠一次印制材料的數(shù)量為 份;
②印制800份宣傳材料時(shí),選擇 印刷廠比較合算;
③電視機(jī)廠擬拿出3000元用于印制宣傳材料,在 印刷廠印制宣傳材料可以多一些.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列內(nèi)容,并解決問題.
一道習(xí)題引發(fā)的思考
小明在學(xué)習(xí)《勾股定理》一章內(nèi)容時(shí),遇到了一個(gè)習(xí)題,并對有關(guān)內(nèi)容進(jìn)行了研究;
習(xí)題再現(xiàn):
古希臘的哲學(xué)家柏拉圖曾指出,如果表示大于1的整數(shù),,,,那么,,為勾股數(shù).你認(rèn)為對嗎?如果對,你能利用這個(gè)結(jié)論得出一些勾股數(shù)嗎?
資料搜集:
定義:勾股數(shù)是指可以構(gòu)成一個(gè)直角三角形三邊的一組正整數(shù).一般地,若三角形三邊長,,都是正整數(shù),且滿足,那么,,稱為一組勾股數(shù).
關(guān)于勾股數(shù)的研究:我囯西周初數(shù)學(xué)家商高在公元前1000年發(fā)現(xiàn)了“勾三,股四,弦五”,這組數(shù)是世界上最早發(fā)現(xiàn)的一組勾股效,畢達(dá)哥拉斯學(xué)派、柏拉圖學(xué)派、我國數(shù)學(xué)家劉徽、古希臘數(shù)學(xué)家丟番圖都進(jìn)行過勾股數(shù)的研究.習(xí)題中的表達(dá)式是柏拉圖給出的勾股數(shù)公式,這個(gè)表達(dá)式未給出全部勾股數(shù),世界上第一次給出勾股數(shù)通解公式的是《九幸算術(shù)),其勾股數(shù)公式為:,,,其中,,是互質(zhì)的奇數(shù).(注:,,的相同倍數(shù)組成的一組數(shù)也是勾股數(shù))
問題解答:
(1)根據(jù)柏拉圖的研究,當(dāng)時(shí),請直接寫出一組勾股數(shù);
(2)若表示大于1的整數(shù),試證明是一組勾股數(shù);
(3)請舉出一個(gè)反例(即寫出一組勾股數(shù)),說明柏拉圖給出的勾股數(shù)公式不能構(gòu)造出所有的勾股數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊(duì)承接了60萬平方米的綠化工程,由于情況有變,…設(shè)原計(jì)劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省路的部分是( )
A.實(shí)際每天的工作效率比原計(jì)劃提高了,結(jié)果提前30天完成了這一任務(wù)
B.實(shí)際每天的工作效率比原計(jì)劃提高了,結(jié)果延誤30天完成了這一任務(wù)
C.實(shí)際每天的工作效率比原計(jì)劃降低了,結(jié)果延誤30天完成了這一任務(wù)
D.實(shí)際每天的工作效率比原計(jì)劃降低了,結(jié)果提前30天完成了這一任務(wù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位線,點(diǎn)D在AB上,把點(diǎn)B繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)α(0°<α<180°)角得到點(diǎn)F,連接AF,BF.下列結(jié)論:①△ABF是直角三角形;②若△ABF和△ABC全等,則α=2∠BAC或2∠ABC;③若α=90°,連接EF,則S△DEF=4.5;其中正確的結(jié)論是( )
A.①②B.①③C.①②③D.②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com