【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交切線AC于點C,OC與半圓O交于點E,連接BE,DE.

(1)求證:∠BED=∠C;

(2)若OA=5,AD=8,求AC的長.

【答案】(1)證明見解析;(2)AC=

【解析】

(1)由切線的性質(zhì)得∠1+2=90°;由同角的余角相等得到∠C=2.由圓周角定理知∠BED=2,故∠BED=C;
(2)連接BD.由直徑直徑對的圓周角是直角得∠ADB=90°,由勾股定理求得BD===6,OAC∽△BDAOA:BD=AC:DA,從而求得AC的值.

(1)證明:∵AC是⊙O的切線,AB是⊙O直徑,

ABAC.

則∠1+2=90°,

又∵OCAD,

∴∠1+C=90°,

∴∠C=2,

而∠BED=2,

∴∠BED=C;

(2)解:連接BD,

AB是⊙O直徑,

∴∠ADB=90°,

BD===6,

∴△OAC∽△BDA,

OA:BD=AC:DA,

5:6=AC:8,

AC=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某市水果大豐收,兩個水果基地分別收獲同種水果件、件,現(xiàn)需把這些水果全部運往甲、乙兩銷售點,從基地運往甲、乙兩銷售點的費用分別為每件元和元,從基地運往甲、乙兩銷售點的費用分別為每件元和元,現(xiàn)甲銷售點需要水果件,乙銷售點需要水果件.

設(shè)從基地運往甲銷售點水果件,總運費為元,請用含的代數(shù)式表示,并寫出的取值范圍;

若總運費不超過元,且基地運往甲銷售點的水果不低于件,試確定運費最低的運輸方案,并求出最低運費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一艘漁輪在海上C處作業(yè)時,發(fā)生故障,立即向搜救中心發(fā)出救援信號,此時搜救中心的兩艘救助輪救助一號和救助二號分別位于海上A處和B處,BA的正東方向,且相距100里,測得地點CA的南偏東60,在B的南偏東30方向上,如圖所示,若救助一號和救助二號的速度分別為40/小時和30/小時,問搜救中心應(yīng)派那艘救助輪才能盡早趕到C處救援?(≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教材原題解答:

已知是含字母的單項式,要使多項式是某個多項式的平方,求

解:根據(jù)完全平方公式,分兩種情況:

當(dāng)為含字母的一次單項式時,

當(dāng)為含字母的四次單項式時,

問題發(fā)現(xiàn):

由上面問題解答過程,我們可以得到下列等式:

觀察等式的左邊多項式的系數(shù)發(fā)現(xiàn):

愛學(xué)習(xí)的小明又進行了很多運算:等等,

發(fā)現(xiàn)同樣有

于是小明猜測:若多項式(是常數(shù),)是某個含的多項式的平方,則系數(shù)一定存在某種關(guān)系

問題解決:

1)請用代數(shù)式表示之間的關(guān)系;

2)若多項式加上一個含字母y的單項式,就能變形為一個含的多項式的平方,請直接寫出所有滿足條件的單項式,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,∠BAD+BCD=180°, AC平分∠BAD,過點CCEAD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長是____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了“創(chuàng)建文明城市,建設(shè)美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進行綠化,一部分種草,剩余部分栽花,設(shè)種草部分的面積為m2),種草所需費用1(元)與m2)的函數(shù)關(guān)系式為,其圖象如圖所示:栽花所需費用2(元)與x(m2)的函數(shù)關(guān)系式為2=﹣0.012﹣20+300000≤≤1000).

(1)請直接寫出k1、k2和b的值;

(2)設(shè)這塊1000m2空地的綠化總費用為W(元),請利用W與的函數(shù)關(guān)系式,求出綠化總費用W的最大值;

(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請求出綠化總費用W的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)(﹣3x2)(x3y2;

2)(x5)(2x+1);

3)(a22﹣(a1)(a+1);

4)(3ab+)(3ab).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當(dāng)陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,點的中點,如果點在線段上以的速度由點向點移動,同時點在線段上由點向點的速度移動,若同時出發(fā),當(dāng)有一個點移動到點時,、都停止運動,設(shè)、移動時間為

1)求的取值范圍.

2)當(dāng)時,問是否全等,并說明理由.

3時,若為等腰三角形,求的值.

查看答案和解析>>

同步練習(xí)冊答案