【題目】如圖,中,為上一點(diǎn),連接,,點(diǎn)在上,連接BE,∠C=∠DEB,若BE=3,AB=4,則線段AE的長(zhǎng)為_____.
【答案】
【解析】
由∠ABC+∠DBF=90°可以聯(lián)想到構(gòu)造直角三角形,過(guò)B點(diǎn)作BF⊥AB交AD延長(zhǎng)線與F,于是∠DBF=∠CAD,由∠C=∠DEB可得∠F=∠DEB,BE=BF,由面積法求高BH=,再由勾股定理求出AH,HE,即可解答
解:過(guò)B點(diǎn)作BF⊥AB交AD延長(zhǎng)線與F,
∴∠ABC+∠DBF=90°,
∵,
∴∠DBF=∠CAD,
∴∠C=∠F,
∵∠C=∠DEB,
∴∠F=∠DEB,
∴BE=BF,
∵∠ABF=90°,AB=4,BE=3,
∴AF===5
作BH⊥DF垂足為H,
由面積法求高可知:
解得:BH=,
∴AH===
HE===
∴AE=AH-HE==
故答案為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,請(qǐng)按照要求解答問(wèn)題.
(1)數(shù)軸上的點(diǎn)C在2、3的正中間位置,則點(diǎn)C表示的數(shù)是 ,線段AB的中點(diǎn)D表示的數(shù)是 ;
(2)線段AB的中點(diǎn)D與線段BC的中點(diǎn)E的距離為 ;
(3)在數(shù)軸上方有一點(diǎn)M,下方有一點(diǎn)N,且∠ABM=120°,∠CBN=60°,請(qǐng)畫(huà)出示意圖,并判斷BC是否平分∠MBN.簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探究活動(dòng))
(1)問(wèn)題發(fā)現(xiàn):如圖①,直線AB∥CD,E是AB與AD之間的一點(diǎn),連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC.
請(qǐng)把下面的證明過(guò)程補(bǔ)充完整:
證明:過(guò)點(diǎn)E作EF∥AB,
∵AB∥DC(已知),EF∥AB(輔助線的作法),
∴EF∥DC( )
∴∠C=∠CEF.( )
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C= (等量代換)
即∠B+∠C=∠BEC.
(2)拓展探究:如果點(diǎn)E運(yùn)動(dòng)到圖②所示的位置,其他條件不變,試探究∠B、∠C、∠BEC的數(shù)量關(guān)系并證明;
(3)解決問(wèn)題:如圖③,AB∥DC,∠C=120°,∠AEC=80°,則∠A= .(直接寫(xiě)出結(jié)論,不用寫(xiě)計(jì)算過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(a,b),若點(diǎn)P′的坐標(biāo)為(a ,ka+b)(其中k為常數(shù),且k≠0),則稱(chēng)點(diǎn)P′為點(diǎn)P的“k關(guān)聯(lián)點(diǎn)”.
(1)求點(diǎn)P(﹣2,3)的“2關(guān)聯(lián)點(diǎn)”P(pán)′的坐標(biāo);
(2)若a、b為正整數(shù),點(diǎn)P的“k關(guān)聯(lián)點(diǎn)”P(pán)′的坐標(biāo)為(3,6),求出k及點(diǎn)P的坐標(biāo);
(3)如圖,點(diǎn)Q的坐標(biāo)為(0,4 ),點(diǎn)A在函數(shù)y=﹣ (x<0)的圖象上運(yùn)動(dòng),且點(diǎn)A是點(diǎn)B的“﹣ 關(guān)聯(lián)點(diǎn)”,當(dāng)線段BQ最短時(shí),求B點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】飛機(jī)著陸后滑行的距離S(單位:m)與滑行的時(shí)間t(單位:s)的函數(shù)關(guān)系式是S=80t﹣2t2 , 飛機(jī)著陸后滑行的最遠(yuǎn)距離是m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】霧霾天氣嚴(yán)重影響市民的生活質(zhì)量.在去年寒假期間,某校八年級(jí)一班的綜合實(shí)踐小組同學(xué)對(duì)“霧霾天氣的主要成因”隨機(jī)調(diào)查了所在城市部分市民.并對(duì)調(diào)查結(jié)果進(jìn)行了整理.繪制了如圖不完整的統(tǒng)計(jì)圖表.觀察分析并回答下列問(wèn)題.
組別 | 霧霾天氣的主要成因 | 百分比 |
A | 工業(yè)污染 | 45% |
B | 汽車(chē)尾氣排放 | m |
C | 爐煙氣排放 | 15% |
D | 其他(濫砍濫伐等) | n |
(1)本次被調(diào)查的市民共有多少人?
(2)求m、n的值,并計(jì)算圖2中區(qū)域B所對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)若該市有100萬(wàn)人口,請(qǐng)估計(jì)持有A、B兩組主要成因的市民有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BC=6,D為AC延長(zhǎng)線上一點(diǎn),AC=3CD,過(guò)點(diǎn)D作DH∥AB,交BC的延長(zhǎng)線于點(diǎn)H.
(1)求BH的長(zhǎng);
(2)若AB=12,試判斷∠CBD與∠A的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知射線AB∥射線CD,P為一動(dòng)點(diǎn),AE平分∠PAB,CE平分∠PCD,且AE與CE相交于點(diǎn)E.
(1)在圖1中,當(dāng)點(diǎn)P運(yùn)動(dòng)到線段AC上時(shí),∠APC=180°.
①直接寫(xiě)出∠AEC的度數(shù);②求證:∠AEC=∠EAB+∠ECD;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到圖2的位置時(shí),猜想∠AEC與∠APC之間的關(guān)系,并加以說(shuō)明;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到圖3的位置時(shí),(2)中的結(jié)論是否還成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)寫(xiě)出∠AEC與∠APC之間的關(guān)系,并加以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的面積為8cm2 , AP垂直∠B的平分線BP于P,則△PBC的面積為( )
A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com