【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計(jì)劃一次購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?
【答案】(1)銷售每臺A型電腦利潤為100元,銷售每臺B型電腦利潤為150元;(2)①②34,66臺.
【解析】(1)設(shè)每臺A型電腦銷售利潤為x元,每臺B型電腦的銷售利潤為y元,然后根據(jù)利潤4000元和3500元列出方程組,然后求解即可;
(2)①根據(jù)總利潤等于兩種電腦的利潤之和列式整理即可得解;
②根據(jù)B型電腦的進(jìn)貨量不超過A型電腦的2倍列不等式求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出利潤的最大值即可.
(1)設(shè)銷售每臺A型電腦利潤為a元,銷售每臺B型電腦利潤為b元,
根據(jù)題意,得:
;解這個方程組得:
(2) ①
② , ,
∴的最小值為34,100-x=66
“點(diǎn)睛”本題考查了一次函數(shù)的應(yīng)用,二元一次方程組的應(yīng)用,一元一次不等式,讀懂題目信息,準(zhǔn)確找出等量關(guān)系列出方程組是解題的關(guān)鍵,利用一次函數(shù)的增減性求最值是常用的方法,需熟練掌握.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于x,y定義一種新運(yùn)算“*”:x*y=3x﹣2y,等式右邊是通常的減法和乘法運(yùn)算,如2*5=3×2﹣2×5=﹣4,那么(x+1)*(x﹣1)≥5的解集是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.(﹣3x2y)3=﹣9x6y3
B.(a+b)(a+b)=a2+b2
C.
D.(x2)3=x5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對全校學(xué)生進(jìn)行文明禮儀知識測試,為了解測試結(jié)果,隨機(jī)抽取部分學(xué)生的成績進(jìn)行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).
請你根據(jù)圖中所給的信息解答下列問題:
(1)請將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績,則該校被抽取的學(xué)生中有達(dá)標(biāo)率為 ;
(3)若該校學(xué)生有學(xué)生3000人,請你估計(jì)此次測試中,全校達(dá)標(biāo)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=12,若點(diǎn)P在AD邊上,連接BP、PC,△BPC是以PB為腰的等腰三角形,則PB的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)表達(dá)式:(1)﹣3<0(2)3x+5>0(3)x2﹣6(4)x=﹣2(5)y≠0(6)x≥50中,不等式的個數(shù)是()
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a、b被直線c所截,下列說法正確的是( )
A.當(dāng)∠1=∠2時(shí),一定有a∥b
B.當(dāng)a∥b時(shí),一定有∠1=∠2
C.當(dāng)a∥b時(shí),一定有∠1+∠2=90°
D.當(dāng)∠1+∠2=180°時(shí),一定有a∥b
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com