【題目】如圖,以△ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點(diǎn)分別為D、E,且=.
(1)試判斷△ABC的形狀,并說(shuō)明理由.
(2)已知半圓的半徑為5,BC=12,求sin∠ABD的值.
【答案】(1)△ABC為等腰三角形;理由見(jiàn)解析;(2).
【解析】試題分析:(1)連結(jié)AE,如圖,根據(jù)圓周角定理,由=得∠DAE=∠BAE,由AB為直徑得∠AEB=90°,根據(jù)等腰三角形的判定方法即可得△ABC為等腰三角形;
(2)由等腰三角形的性質(zhì)得BE=CE=BC=6,再在Rt△ABE中利用勾股定理計(jì)算出AE=8,接著由AB為直徑得到∠ADB=90°,則可利用面積法計(jì)算出BD=,然后在Rt△ABD中利用勾股定理計(jì)算出AD=,再根據(jù)正弦的定義求解.
解:(1)△ABC為等腰三角形.理由如下:
連結(jié)AE,如圖,
∵=,
∴∠DAE=∠BAE,即AE平分∠BAC,
∵AB為直徑,
∴∠AEB=90°,
∴AE⊥BC,
∴△ABC為等腰三角形;
(2)∵△ABC為等腰三角形,AE⊥BC,
∴BE=CE=BC=×12=6,
在Rt△ABE中,∵AB=10,BE=6,
∴AE==8,
∵AB為直徑,
∴∠ADB=90°,
∴AEBC=BDAC,
∴BD==,
在Rt△ABD中,∵AB=10,BD=,
∴AD==,
∴sin∠ABD===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=2x﹣6關(guān)于y軸對(duì)稱的直線的解析式為( )
A. y=2x+6 B. y=﹣2x+6 C. y=﹣2x﹣6 D. y=2x﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將五個(gè)邊長(zhǎng)都為2cm的正方形按如圖所示擺放,點(diǎn)A、B、C、D分別是四個(gè)正方形的中心,則圖中四塊陰影面積的和為( )
A.2cm2 B.4cm2 C.6cm2 D.8cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)據(jù):80,88,85,85,83,83,84.下列說(shuō)法中錯(cuò)誤的有( )
A、這組數(shù)據(jù)的平均數(shù)是84;
B、這組數(shù)據(jù)的眾數(shù)是85;
C、這組數(shù)據(jù)的中位數(shù)是84;
D、這組數(shù)據(jù)的方差是36.
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD、∠ABC的平分線AF、BG分別與線段CD交于點(diǎn)F、G,
AF與BG交于點(diǎn)E.
(1)求證:AF⊥BG,DF=CG;
(2)若AB=10,AD=6,AF=8,求FG和BG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)國(guó)家的“節(jié)能減排”政策,某廠家開(kāi)發(fā)了一種新型的電動(dòng)車(chē),如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T,大燈照亮地面的寬度BC的長(zhǎng)為m.
(1)求BT的長(zhǎng)(不考慮其他因素).
(2)一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車(chē)動(dòng)作的反應(yīng)時(shí)間是0.2s,從發(fā)現(xiàn)危險(xiǎn)到電動(dòng)車(chē)完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車(chē),從做出剎車(chē)動(dòng)作到電動(dòng)車(chē)停止的剎車(chē)距離是,請(qǐng)判斷該車(chē)大燈的設(shè)計(jì)是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計(jì)),并說(shuō)明理由.
(參考數(shù)據(jù):sin22°≈,tan22°≈,sin31°≈,tan31°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若∠C=,∠EAC+∠FBC=
(1)如圖①,AM是∠EAC的平分線,BN是∠FBC的平分線,若AM∥BN,則與有何關(guān)系?并說(shuō)明理由.
(2)如圖②,若∠EAC的平分線所在直線與∠FBC平分線所在直線交于P,試探究∠APB與、的關(guān)系是 .(用、表示)
(3)如圖③,若≥,∠EAC與∠FBC的平分線相交于, ;依此類(lèi)推,則= (用、表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分6分)如圖,已知AB∥DC,AE平分∠BAD,CD與AE相交于點(diǎn)F,∠CFE=∠E.試說(shuō)明AD∥BC.完成推理過(guò)程:
∵AB∥DC(已知)
∴∠1=∠CFE( )
∵AE平分∠BAD(已知)
∴∠1= ∠2 (角平分線的定義)
∵∠CFE=∠E(已知)∴∠2= (等量代換)
∴AD∥BC( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com