【題目】如圖:∠EAF=15°,AB=BC=CD=DE=EF,則∠DEF等于(

A.60°B.75°C.70°D.90°

【答案】A

【解析】

根據(jù)已知條件,利用等腰三角形的性質(zhì)及三角形的內(nèi)角和外角之間的關系進行計算.

AB=BC=CD=DE=EF

A=15°

∴∠BCA=A=15°

∴∠CBD=BDC=BCA+A=15°+15°=30°

∴∠BCD=180°(CBD+BDC)=180°60°=120°

∴∠ECD=CED=180°BCDBCA=180°120°15°=45°

∴∠CDE=180°(ECD+CED)=180°90°=90°

∴∠EDF=EFD=180°CDEBDC=180°90°30°=60°

∴∠DEF=180°(EDF+EFC)=180°120°=60°

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有關部門從甲、乙兩個城市所有的自動售貨機中分別隨機抽取了16臺,記錄下某一天各自的銷售情況(單位:元):

甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41

乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23

小強用如圖所示的方法表示甲城市16臺自動售貨機的銷售情況.

(1)請你仿照小強的方法將乙城市16臺自動售貨機的銷售情況表示出來;

(2)請你觀察圖1,你能從圖1中獲取哪些信息?(至少寫出兩條不同類型信息)

(3)小芳用圖2的條形統(tǒng)計圖表示甲城市16臺自動售貨機的銷售情況,請你觀察圖2,你能從圖2中獲取哪些信息?(至少寫出兩條不同類型信息)

(4)如果收集到的數(shù)據(jù)很多,例如有200個,你認為圖1和圖2這兩種統(tǒng)計圖用哪一種更能直觀的反映這些數(shù)據(jù)分布的大致情況?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 RtABC 中,∠ACB=90°,BC=5,點 P 在邊 AB 上,連接 CP.將△BCP 沿直線CP 翻折后,點 B 恰好落在邊 AC 的中點處,則點 P AC 的距離是( )

A. 2.5 B. C. 3.5 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知等邊三角形ABC,點PAB的中點,點D、E分別為邊AC、BC上的點,∠APD+BPE=60°.
1)①若PDACPEBC,直接寫出PDPE的數(shù)量關系:____;

②如圖1,證明:AP=AD+BE
2)如圖2,點F、H分別在線段BCAC上,連接線段PHPF,若PDPFPD=PF,HPEP.求∠FHP的度數(shù);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CD是斜邊AB上的中線,分別過點A,CAEDC,CEAB,兩線交于點E.

(1)求證:四邊形AECD是菱形;

(2)如果∠B=60°,BC=2,求四邊形AECD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王強同學用10塊高度都是2cm的相同長方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進一個等腰直角三角板(ACBC,∠ACB90°),點CDE上,點AB分別與木墻的頂端重合,則兩堵木墻之間的距離為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC、FGH中,D、E兩點分別在AB、AC上,F點在DE上,G、H兩點在BC上,且DEBC,F(xiàn)GAB,F(xiàn)HAC,若BG:GH:HC=4:6:5,則△ADE與△FGH的面積比為何?( 。

A. 2:1 B. 3:2 C. 5:2 D. 9:4

查看答案和解析>>

同步練習冊答案