【題目】如圖,△ABC、△FGH中,D、E兩點分別在AB、AC上,F點在DE上,G、H兩點在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,則△ADE與△FGH的面積比為何?( )
A. 2:1 B. 3:2 C. 5:2 D. 9:4
科目:初中數學 來源: 題型:
【題目】在學校開展的數學活動課上,小明和小剛制作了一個正三樓錐(質量均勻,四個面完全相同),并在各個面上分別標記數字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數字,如果兩次所擲數字的和為單數,那么算小明贏,如果兩歡所擲數字的和為偶數,那么算小明贏;
(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結果.
(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(閱讀理解)
課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內經過合作交流,得到了如下的解決方法:延長AD到點E,使DE=AD,請根據小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB的理由是_____.
A.SSS B.SAS C.AAS D.HL
(2)求得AD的取值范圍是______.
A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7
(感悟)
解題時,條件中若出現“中點”“中線”字樣,可以考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集合到同一個三角形中.
(問題解決)
(3)如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.求證:AC=BF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人駕車都從Р地出發(fā),沿一條筆直的公路勻速前往Q地,乙先出發(fā)一段時間后甲再出發(fā),甲、乙兩人到達Q地后均停止,已知P、Q兩地相距200 km,設乙行駛的時間為t(h),甲、乙兩人之間的距離為y(km),表示y與t函數關系的部分圖象如圖所示.請解決以下問題:
(1)由圖象可知,甲比乙遲出發(fā)________h.圖中線段BC所在直線的函數解析式為________________;
(2)設甲的速度為,求出的值;
(3)根據題目信息補全函數圖象(不需要寫出分析過程,但必須標明關鍵點的坐標);并直接寫出當甲、乙兩人相距32 km時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關于直線l成軸對稱的△AB′C′;
(2)在直線l上找一點P,使PB′+PC的長最短;
(3)若△ACM是以AC為腰的等腰三角形,點M在小正方形的頂點上.這樣的點M共有 個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】生活中處處有數學.
(1)如圖(1)所示,一扇窗戶打開后,用窗鉤將其固定,這里所運用的數學原理是 ;
(2)如圖(2)所示,在新修的小區(qū)中,有一條“”字形綠色長廊,其中,在,,三段綠色長廊上各修一小涼亭,,,且,點是的中點,在涼亭與之間有一池塘,不能直接到達,要想知道與之間的距離,只需要測出線段的長度,這樣做合適嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數的圖象上一點,直線與反比例函數的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數的解析式;
(2)求點D坐標,并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現,在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數據:,,結果精確到0.1小時)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com