(1)解方程:(x-3)2=2(3-x);
(2)計(jì)算:
1
2
-1
-3tan230°+2
(sin45°-1)2
分析:(1)將方程右邊看做一個(gè)整體,移項(xiàng)到左邊,提取公因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)求解;
(2)原式第一項(xiàng)分母有理化,第二項(xiàng)利用特殊角的三角函數(shù)值化簡(jiǎn),最后一項(xiàng)利用特殊角的三角函數(shù)值化簡(jiǎn)后,再利用絕對(duì)值的代數(shù)意義化簡(jiǎn),即可得到結(jié)果.
解答:解:(1)(x-3)2=2(3-x),
移項(xiàng)得:(x-3)2+2(x-3)=0,
分解因式得:(x-3)(x-3+2)=0,
可得x-3=0或x-3+2=0,
解得:x1=3,x2=1;
(2)原式=
2
+1
(
2
-1)(
2
+1)
-3×(
3
3
2+2|1-1|=
2
+1-1+0=
2
點(diǎn)評(píng):此題考查了解一元二次方程-因式分解法,特殊角的三角函數(shù)值,以及二次根式的混合運(yùn)算,利用因式分解方法解方程時(shí),首先將方程右邊化為0,左邊化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、解方程x2-|x|-2=0,
解:1.當(dāng)x≥0時(shí),原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當(dāng)x<o(jì)時(shí),原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請(qǐng)參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項(xiàng),得-3x+2x=8-1…③
合并同類項(xiàng),得-x=7…④
∴x=-7…⑤
上述解方程的過(guò)程中,是否有錯(cuò)誤?答:
 
;如果有錯(cuò)誤,則錯(cuò)在
 
步.如果上述解方程有錯(cuò)誤,請(qǐng)你給出正確的解題過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)
;
(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1
;
(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各題:
(1)先化簡(jiǎn)再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習(xí)冊(cè)答案