如圖,直線AB與⊙O相切于點A,AC、CD是⊙O的兩條弦,且CD∥AB,若⊙O的半徑為,CD=4,則弦AC的長為________

答案:
解析:

  答案:

  分析::本題考查的是垂徑定理的應(yīng)用切線的性質(zhì)及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.

  解答:連接OA,作OE⊥CD于E,易得OA⊥AB,CE=DE=2,由于CD∥AB得EOA三點共線,連OC,在直角三角形OEC中,由勾股定理得OE=,從而AE=4,再直角三角形AEC中由勾股定理得AC=


提示:

考點:垂徑定理;勾股定理.切線的性質(zhì).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,直線AB與⊙O相切于點B,BC是⊙O的直徑,AC交⊙O于點D,連接BD,則圖中直角三角形有
3
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD,∠AOD=40°.求:∠POB,∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB與x軸、y軸分別交于點A、B,點A的坐標(biāo)是(2,0),∠ABO=30°.在坐標(biāo)平面內(nèi),是否存在點P(除點O外),使得△APB與△AOB全等.請寫出所有符合條件的點P的坐標(biāo)
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB與CD相交于O點,∠AOE=∠DOF=90°,OP是∠BOC的平分線,其中∠AOD=40°,則∠EOP的度數(shù)為 (  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB與直線CD相交于點O,OE⊥AB,垂足為O,若∠AOC=65°,則∠DOE的度數(shù)是
25°
25°

查看答案和解析>>

同步練習(xí)冊答案