【題目】(10分)某電腦公司經銷甲種型號電腦,受經濟危機影響,電腦價格不斷下降.今年三月份的電腦售價比去年同期每臺降價1000元,如果賣出相同數量的電腦,去年銷售額為10萬元,今年銷售額只有8萬元.
(1)今年三月份甲種電腦每臺售價多少元?
(2)為了增加收入,電腦公司決定再經銷乙種型號電腦,已知甲種電腦每臺進價為3500元,乙種電腦每臺進價為3000元,公司預計用不多于5萬元且不少于4.8萬元的資金購進這兩種電腦共15臺,有幾種進貨方案?
(3)如果乙種電腦每臺售價為3800元,為打開乙種電腦的銷路,公司決定每售出一臺乙種電腦,返還顧客現金元,要使(2)中所有方案獲利相同,值應是多少?此時,哪種方案對公司更有利?
【答案】(1)4000(2)5(3)6,9
【解析】試題分析:(1)求單價,總價明顯,應根據數量來列等量關系.等量關系為:今年的銷售數量=去年的銷售數量.
(2)關系式為:4.8≤甲種電腦總價+乙種電腦總價≤5.
(3)方案獲利相同,說明與所設的未知數無關,讓未知數x的系數為0即可;對公司更有利,因為甲種電腦每臺進價為3500元,乙種電腦每臺進價為3000元,所以要多進乙.
試題解析:(1)設今年三月份甲種電腦每臺售價m元.則:
.
解得:m=4000.
經檢驗,m=4000是原方程的根且符合題意.
所以甲種電腦今年每臺售價4000元;
(2)設購進甲種電腦x臺.則:
48000≤3500x+3000(15﹣x)≤50000.
解得:6≤x≤10.
因為x的正整數解為6,7,8,9,10,所以共有5種進貨方案;
(3)設總獲利為W元.則:
W=(4000﹣3500)x+(3800﹣3000﹣a)(15﹣x)=(a﹣300)x+12000﹣15a.
當a=300時,(2)中所有方案獲利相同.
此時,購買甲種電腦6臺,乙種電腦9臺時對公司更有利.
科目:初中數學 來源: 題型:
【題目】中國海軍亞丁灣護航十年,中國海軍被亞丁灣上來往的各國商船譽為“值得信賴的保護傘”如圖,在一次護航行動中,我國海軍監(jiān)測到一批可疑快艇正快速向護航的船隊靠近.為保證船隊安全,我國海軍迅速派出甲、乙兩架直升機分別從相距20海里的船隊首(O點)尾(A點)前去攔截,4分鐘后同時到達B點將可疑快艇驅離.已知甲直升機每小時飛行180海里,航向為北偏東25°,乙直升機的航向為北偏西65°,求乙直升機的飛行速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.中學生帶手機上學的現象越來越受到社會的關注,為此某記者隨機調查了某市城區(qū)若干名中學生家長對這種現象的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.贊成;D.反對).并將調查結果繪制成頻數折線統(tǒng)計圖1和扇形統(tǒng)計圖2(不完整).請根據圖中提供的信息,解答下列問題:
(1)此次抽樣調查中,共調查了 名中學生家長;
(2)求出圖2中扇形C所對的圓心角的度數,并將圖1補充完整;
(3)根據抽樣調查結果,請你估計該市城區(qū)6000名中學生家長中有多少名家長持反對態(tài)度.
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商城銷售A,B兩種自行車.A型自行車售價為2 100元/輛,B型自行車售價為1 750元/輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80 000元購進A型自行車的數量與用64 000元購進B型自行車的數量相等.
(1)求每輛A,B兩種自行車的進價分別是多少?
(2)現在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數量不超過A型自行車數量的2倍,總利潤不低于13 000元,求獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是AB的中點,E是CD的中點, 過點C作CF//AB交AE的延長線于點F,連接BF.
(1) 求證:DB=CF;
(2) 如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,BC切⊙O于點B,AC交⊙O于點D.
(1)求證:AB2=ADAC;
(2)當點D運動到半圓AB什么位置時,△ABC為等腰直角三角形,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在長方形紙片ABCD中,AB=m,AD=n,將兩張邊長分別為6和4的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.
(1)在圖1中,EF=___,BF=____;(用含m的式子表示)
(2)請用含m、n的式子表示圖1,圖2中的S1,S2,若m-n=2,請問S2-S1的值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著生活水平的提高,人們對飲水質量的需求越來越高,我市某公司根據市場需求準備銷售A、B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進價多300元,用48000元購進A型凈水器與用36000元購進B型凈水器的數量相等.
(1)求每臺A型、B型凈水器的進價各是多少元?
(2)該公司計劃購進A、B兩種型號的凈水器共400臺進行銷售,其中A型的臺數不超過B型的臺數,A型凈水器每臺售價1500元,B型凈水器每臺售價1100元,怎樣安排進貨才能使售完這400臺凈水器所獲利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com