【題目】如圖,在平面直角坐標系中,直線y= x+1與拋物線y=ax2+bx﹣3交于A、B兩點,點A在x軸上,點B的縱坐標為3.點P是直線AB下方的拋物線上一動點(不與A、B點重合),過點P作x軸的垂線交直線AB于點C,作PD⊥AB于點D.
(1)求a、b及sin∠ACP的值;
(2)設點P的橫坐標為m;
①用含有m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
②連接PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積之比為9:10?若存在,直接寫出m的值;若不存在,說明理由.
【答案】
(1)
解:由 x+1=0,得x=﹣2,∴A(﹣2,0).
由 x+1=3,得x=4,∴B(4,3).
∵y=ax2+bx﹣3經(jīng)過A、B兩點,
∴
∴ ,
則拋物線的解析式為:y= x2﹣ x﹣3,
設直線AB與y軸交于點E,則E(0,1).
∵PC∥y軸,
∴∠ACP=∠AEO.
∴sin∠ACP=sin∠AEO= = =
(2)
解:①由(1)知,拋物線的解析式為y= x2﹣ x﹣3.則點P(m, m2﹣ m﹣3).
已知直線AB:y= x+1,則點C(m, m+1).
∴PC= m+1﹣( m2﹣ m﹣3)=﹣ m2+m+4=﹣ (m﹣1)2+
Rt△PCD中,PD=PCsin∠ACP=[﹣ (m﹣1)2+ ] =﹣ (m﹣1)2+
∴PD長的最大值為: .
②如圖,分別過點D、B作DF⊥PC,BG⊥PC,垂足分別為F、G.
∵sin∠ACP= ,
∴cos∠ACP= ,
又∵∠FDP=∠ACP
∴cos∠FDP= = ,
在Rt△PDF中,DF= PD=﹣ (m2﹣2m﹣8).
又∵BG=4﹣m,
∴ = = = = .
當 = = 時,解得m= ;
當 = = 時,解得m= .
【解析】(1)已知直線AB的解析式,首先能確定A、B點的坐標,然后利用待定系數(shù)法確定a、b的值;若設直線AB與y軸的交點為E,E點坐標易知,在Rt△AEO中,能求出sin∠AEO,而∠AEO=∠ACP,則∠ACP的正弦值可得.(2)①已知P點橫坐標,根據(jù)直線AB、拋物線的解析式,求出C、P的坐標,由此得到線段PC的長;在Rt△PCD中,根據(jù)(1)中∠ACP的正弦值,即可求出PD的表達式,再根據(jù)所得函數(shù)的性質求出PD長的最大值.②在表達△PCD、△PBC的面積時,若都以PC為底,那么它們的面積比等于PC邊上的高的比.分別過B、D作PC的垂線,首先求出這兩條垂線段的表達式,然后根據(jù)題干給出的面積比例關系求出m的值.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質的相關知識可以得到問題的答案,需要掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E,F(xiàn)分別是線段BC,AD的中點,AB=2,AD=4,動點P沿EC,CD,DF的路線由點E運動到點F,則△PAB的面積s是動點P運動的路徑總長x的函數(shù),這個函數(shù)的大致圖象可能是
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與直線y= x+2交于C、D兩點,其中點C在y軸上,點D的坐標為(3, ).點P是y軸右側的拋物線上一動點,過點P作PE⊥x軸于點E,交CD于點F.
(1)求拋物線的解析式;
(2)若點P的橫坐標為m,當m為何值時,以O、C、P、F為頂點的四邊形是平行四邊形?請說明理由.
(3)若存在點P,使∠PCF=45°,請直接寫出相應的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC中,BD平分∠ABC,CE平分∠ACB的鄰補角∠ACM,若∠BDC=130°,∠E=50°,則∠BAC的度數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點A落在點A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( 。
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一朵小花放置在平面直角坐標系中第三象限內(nèi)的甲位置,先將它繞原點O旋轉180°到乙位置,再將它向下平移2個單位長到丙位置,則小花頂點A在丙位置中的對應點A′的坐標為( )
A.(3,1)
B.(1,3)
C.(3,﹣1)
D.(1,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請通過計算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A,B在數(shù)軸上對應的數(shù)分別為a,b,且|a+4|+(b-2)2=0,點A,B之間的距離記作AB.
(1)線段AB的長為 ;(直接寫出結果)
(2)若動點P在數(shù)軸上對應的數(shù)為x.
①當PA+PB的值最小時,則奇數(shù)x的值為 ;(直接寫出結果)
②當PA+PB=14時,求x的值;
(3)當動點P在點A的左側,M,N分別是PA,PB的中點,當點P在A的左側移動時,聰明的小明同學在計算PM+PN和PN-PM的值時發(fā)現(xiàn):其中只有一個的值是不變的,請你判斷出哪一個的值不變,并求這個值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定運算符號的意義是:當a>b時,ab=a﹣b;當a<b時,ab=a+b.
(1)計算:61= ;(﹣3)2= ;
(2)棍據(jù)運算符號的意義且其他運算符號意義不變的條件下,
①計算:﹣14+15×[(﹣)(﹣)]﹣(3223)÷(﹣7),
②若x,y在數(shù)軸上的位置如圖所示,
a.填空:x2+1 y(填“>“或“<”):
b.化簡:[(x2+x+1)(x+y)]+[(y﹣x2)(y+2)].
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com