精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過點OEFBC分別交AB、ACE、F.若∠BOC=130°,∠ABC:∠ACB=32,求∠AEF和∠EFC

【答案】AEF=60°,EFC=140°.

【解析】

先根據三角形內角和定理,求出∠OBC+OCB的度數,再根據角平分線定義和已知中的∠ABC:∠ACB=3:2,求出∠ABC、∠ACB的度數,最后依據平行線的性質求出∠AEF和∠EFC的度數.

∵∠ABC: ∠ACB=3:2,

∴設∠ABC=3x, ∠ACB=2x,

∵BO、CO分別平分 ∠ ABC、 ∠ ACB,

∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,

又∵∠BOC=130°,

BOC中,∠BOC+∠OBC+∠OCB=180°,

∴130°+x+x=180°,

解得:x=20°,

∴∠ABC=3x=60°, ∠ACB=2x=40°,

∵EF∥BC,

∴∠AEF=∠ABC=60°,

∠EFC+∠ACB=180°,

∴∠EFC=140°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,將邊長為3的正六邊形鐵絲框ABCDEF變形為以點A為圓心,AB為半徑的扇形(忽略鐵絲的粗細).則所得扇形AFB(陰影部分)的面積為(
A.6π
B.18
C.18π
D.20

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,DE∥AB.請根據已知條件進行推理,分別得出結論,并在括號內注明理由.

(1)∵DE∥AB,( 已知 )

∴∠2=   . (  ,  

(2)∵DE∥AB,(已知 )

∴∠3=   .(  ,  

(3)∵DE∥AB(已知 ),

∴∠1+   =180°.(  ,  

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,完成下列推理過程,已知AB∥CD,AC∥BD,

(1)∵AB∥CD(已知) ∴∠A=∠5(兩直線平行,_______________);

(2)∵AC∥BD(已知) ∴∠3=∠4(兩直線平行,_______________);

(3)∵AB∥CD(已知) ∴∠__=∠___(兩直線平行,內錯角相等);

(4)∵AB∥CD(已知) ∴∠D +∠______ =180°(兩直線平行,____)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店用1000元購進一批套尺,很快銷售一空;商店又用1500元購進第二批同款套尺,購進單價比第一批貴25%,所購數量比第一批多100套.

(1)求第一批套尺購進的單價;

(2)若商店以每套4元的價格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】保護環(huán)境、低碳出行已漸漸成為人們的習慣.最近無為縣城又引進了共享單車,只需要交點押金,就可以通過掃描二維碼的方式解鎖一輛停在路邊的自行車,以極低的費用,輕松騎到目的地.王老師家與學校相距2km,現在每天騎共享單車到學校所花的時間比過去騎電動車多用4min.已知王老師騎電動車的速度是騎共享單車速度的1.5倍,則王老師騎共享單車的速度是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學廣場上有旗桿,在學習解直角三角形以后,數學興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結果精確到0.1米).(參考數據:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,半徑為2的正六邊形ABCDEF的中心在坐標原點O,點P從點B出發(fā),沿正六邊形的邊按順時針方向以每秒2個單位長度的速度運動,則第2017秒時,點P的坐標是(
A.(1,
B.(﹣1,﹣
C.(1,﹣
D.(﹣1,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】嫦娥四號探測器于201913日,成功著陸在月球背面,通過鵲橋中繼星傳回了世界第一張近距離拍攝的月背影像圖,開啟了人類月球探測新篇章.當中繼星成功運行于地月拉格朗日L2點時,它距離地球約1500000km.用科學記數法表示數1500000( )

A. 15×105 B. 1.5×106 C. 0.15×107 D. 1.5×105

查看答案和解析>>

同步練習冊答案