【題目】已知點Pa+59+a)位于二象限的角平分線上,則a的值為( )

A. 3 B. -3 C. -7 D. -1

【答案】C

【解析】根據(jù)題意得a+5+9+a=0,解得a=7.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A. x2x=﹣1B. 2xyxy

C. x2+x2x4D. (﹣2a2b3=﹣8a6b3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】B3,-2)到x軸的距離是_________;y軸的距離是____________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果|a|=3,|b|=1,且ab,那么a+b的值是( 。

A. 4 B. 2 C. ﹣4 D. 4或2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.

①依題意將圖2補全;

②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線的方程C1 (m0)x軸交于點BC,與y軸交于點E,且點B在點C的左側(cè).

(1)若拋物線C1過點M(2, 2),求實數(shù)m的值;

(2)在(1)的條件下,求BCE的面積;

(3)在(1)的條件下,在拋物線的對稱軸上找一點H,使得BHEH最小,求出點H的坐標;

(4)在第四象限內(nèi),拋物線C1上是否存在點F,使得以點BC、F為頂點的三角形與BCE相似?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一元二次方程4x2+5x=81化為一般形式后,二次項系數(shù)、一次項系數(shù)、常數(shù)項分別為( )
A.4,5,81
B.4,5,﹣81
C.4,5,0
D.4x2 , 5x,﹣81

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各點,不在二次函數(shù)y=x2的圖象上的是(
A.(1,﹣1)
B.(1,1)
C.(﹣2,4)
D.(3,9)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式中,與2a2b是同類項的是( )

A. abc B. -a2b C. ab2 D. 22b2

查看答案和解析>>

同步練習冊答案