拋物線y=
12
x2-2x-3的開(kāi)口向
,頂點(diǎn)坐標(biāo)為
(2,-5)
(2,-5)
,對(duì)稱軸是直線
x=2
x=2
分析:根據(jù)二次項(xiàng)系數(shù)確定開(kāi)口方向,利用頂點(diǎn)坐標(biāo)公式確定頂點(diǎn)坐標(biāo)和對(duì)稱軸.
解答:解:∵y=
1
2
x2-2x-3,
1
2
>0,
∴圖象開(kāi)口方向向上,
∵y=
1
2
x2-2x-3=
1
2
(x2-4x)-3=
1
2
(x-2)2-5,
∴頂點(diǎn)坐標(biāo)是(2,-5);對(duì)稱軸是x=2.
故答案為:上;(2,-5); x=2.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的性質(zhì),其中求拋物線的頂點(diǎn)坐標(biāo)的方法和公式必須熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(6,0),平移后的拋物線的頂點(diǎn)為點(diǎn)B,對(duì)稱軸與拋物線y=-
1
2
x2
相交于點(diǎn)C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為
27
2
27
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大豐市一模)在如圖的直角坐標(biāo)系中,已知點(diǎn)A(1,0);B(0,-2),將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°至AC.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=-
12
x2+ax+2經(jīng)過(guò)點(diǎn)C.
①求拋物線的解析式;
②在拋物線上是否存在點(diǎn)P(點(diǎn)C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=
1
2
x2+x+c
與x軸有兩個(gè)不同的交點(diǎn).
(1)求c的取值范圍;
(2)拋物線y=
1
2
x2+x+c
與x軸兩交點(diǎn)的距離為2,求c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蘭州)如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線y=
1
2
x2+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是
-2<k<
1
2
-2<k<
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

與拋物線y=-
1
2
x2+3x-5的形狀、開(kāi)口方向都相同,只有位置不同的拋物線是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案