【題目】如圖是由邊長為1的小正方形組成的網(wǎng)格.
(1)求四邊形ABCD的面積;
(2)你能判斷AD與CD的位置關(guān)系嗎?說出你的理由.
【答案】(1)12.5;(2)AD與CD互相垂直,理由見解析.
【解析】
(1)根據(jù)四邊形ABCD的面積=大正方形的面積-四個小直角三角形的面積計算即可;(2)AD⊥DC,利用勾股定理的逆定理證明△ADC是直角三角形即可.
解:(1)四邊形ABCD的面積可看作是邊長為5的正方形的面積與四個角上的四個直角三角形的面積之差,于是四邊形ABCD的面積等于52-(×3×3+×2×3+×4×2+×1×2)=12.5.
(2)AD與CD互相垂直.理由如下:
連接AC,由勾股定理,可得AD2=12+22=5,CD2=22+42=20,又∵AC2=52=25,
∴AD2+CD2=AC2,
∴∠ADC=90°,
即AD與CD互相垂直.
科目:初中數(shù)學 來源: 題型:
【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場新投放共享單車640輛.
(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000輛.請問該公司4月份在深圳市新投放共享單車多少輛?
(2)考慮到自行車市場需求不斷增加,某商城準備用不超過70000元的資金再購進A,B兩種規(guī)格的自行車100輛,已知A型的進價為500元/輛,售價為700元/輛,B型車進價為1000元/輛,售價為1300元/輛。假設(shè)所進車輛全部售完,為了使利潤最大,該商城應如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個矩形ABCD的較短邊長為2.
(1)如圖①,若沿長邊對折后得到的矩形與原矩形相似,求它的另一邊長;
(2)如圖②,已知矩形ABCD的另一邊長為4,剪去一個矩形ABEF后,余下的矩形EFDC與原矩形相似,求余下矩形EFDC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線 (x>0)經(jīng)過矩形OABC的邊AB、BC上的點F、E,其中CE= CB,AF= AB,且四邊形OEBF的面積為2,則k的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
如圖,大海中有A和B兩個島嶼,為測量它們之間的距離,在海岸線PQ上點E處測得∠AEP=74°,∠BEQ=30°;在點F處測得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判斷AB、AE的數(shù)量關(guān)系,并說明理由;
(2)求兩個島嶼A和B之間的距離(結(jié)果精確到0.1km).
(參考數(shù)據(jù):≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請判斷下列問題中,哪些是反比例函數(shù),并說明你的依據(jù).
(1)三角形的底邊一定時,它的面積和這個底邊上的高;
(2)梯形的面積一定時,它的中位線與高;
(3)當矩形的周長一定時,該矩形的長與寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2014浙江金華)如圖,矩形ABOD的兩邊OB,OD都在坐標軸的正半軸上,OD=3,另兩邊與反比例函數(shù) (k≠0)的圖象分別相交于點E、F,且DE=2.過點E作EH⊥x軸于點H,過點F作FG⊥EH于點G.回答下面的問題:
(1)①求反比例函數(shù)的解析式.
②當四邊形AEGF為正方形時,求點F的坐標.
(2)小亮進一步研究四邊形AEGF的特征后提出問題:“當AE>EG時,矩形AEGF與矩形DOHE能否全等?能否相似?”
針對小亮提出的問題,請你判斷這兩個矩形能否全等(直接寫出結(jié)論即可).這兩個矩形能否相似?若能相似,求出相似比;若不能相似,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,CB=8,AD是△ABC的角平分線,過A、C、D三點的圓與斜邊AB交于點E,連接DE。
(1)求證:AC=AE;
(2)求△ACD外接圓的直徑。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,斜邊AB的長為2,O為AB的中點,P為AC邊上的動點,OQ⊥OP交BC于點Q,M為PQ的中點,當點P從點A運動到點C時,點M所經(jīng)過的路線長為( 。
A. B. C. 1 D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com