【題目】如圖1.平面直角坐標(biāo)系為原點(diǎn),長(zhǎng)方形的頂點(diǎn)在坐標(biāo)軸上,點(diǎn),,且己知64的立方根,

1)求點(diǎn)的坐標(biāo);

2)如圖1,有兩動(dòng)點(diǎn)點(diǎn)從點(diǎn)出發(fā)沿軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿的路線勻速移動(dòng),點(diǎn)到達(dá)點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.若長(zhǎng)方形對(duì)角線的交點(diǎn)的坐標(biāo)是,設(shè)運(yùn)動(dòng)時(shí)間為秒,問(wèn):以為頂點(diǎn)的多邊形面積是否為定值,若是,請(qǐng)求出此多邊形的面積;若不是,請(qǐng)說(shuō)明理由.

3)如圖2是線段上一點(diǎn),使,點(diǎn)是線段上任意一點(diǎn)(不與點(diǎn)重合),連接于點(diǎn).已知,求的值.

【答案】1,;(2),以為頂點(diǎn)的多邊形面積為定值,值為2;(3

【解析】

1)根據(jù)64的立方根,,求得ab的值即可;

2)當(dāng)0t2時(shí);當(dāng)t=2時(shí);當(dāng)2t3時(shí),當(dāng)t=3時(shí),求出多邊形的面積,即可證明;

3))設(shè),,用xy表示出∠EOC,∠OEC,∠OGC,∠OAC,代入中,即可求值.

解:(1)∵64的立方根,,

a=4,b=2

,

2)以為頂點(diǎn)的多邊形面積為定值.理由如下:

①當(dāng)時(shí),

②當(dāng)時(shí),

③當(dāng)時(shí),

④當(dāng)時(shí),

,

綜上所述,以為頂點(diǎn)的多邊形面積為定值,值為2.

3)設(shè),,

在△AEC中,,

在△OCG中,,

在△AOC中,,

原式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)某中學(xué)初二年級(jí)抽取部分學(xué)生進(jìn)行跳繩測(cè)試.并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳9099次的為及格;每分鐘跳100109次的為中等;每分鐘跳110119次的為良好;每分鐘跳120次及以上的為優(yōu)秀.測(cè)試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列各題:

1)參加這次跳繩測(cè)試的共有 人;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,中等部分所對(duì)應(yīng)的圓心角的度數(shù)是 ;

4)如果該校初二年級(jí)的總?cè)藬?shù)是480人,根據(jù)此統(tǒng)計(jì)數(shù)據(jù),請(qǐng)你估算該校初二年級(jí)跳繩成績(jī)?yōu)?/span>優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將長(zhǎng)為,寬為的長(zhǎng)方形白紙,,按圖所示的方法粘合起來(lái),粘合部分的寬為厘米.

1)根據(jù)題意,將表格補(bǔ)充完整.

白紙張數(shù)

……

紙條長(zhǎng)度

_______

_______

……

2)設(shè)張白紙粘合后的總長(zhǎng)度為厘米,寫(xiě)出之間的關(guān)系式;并求出張白紙粘合后的總長(zhǎng)度.

3)若粘合后的總長(zhǎng)度為,問(wèn)需要多少?gòu)埌准垼?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為, 、、分別是、上的動(dòng)點(diǎn),且

)求證:四邊形是正方形.

)判斷直線是否經(jīng)過(guò)某一定點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).

(1)求證:△PCE≌△EDQ;
(2)延長(zhǎng)PC,QD交于點(diǎn)R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;

(3)如圖3,若△ARB∽△PEQ,求∠MON大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E、F分別是邊AB、AC、BC的中點(diǎn),要判定四邊形DBFE是菱形,下列所添加條件不正確的是(  )

A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:| ﹣2|﹣(π﹣2015)0+(﹣ 2﹣2sin60°+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖∠1=∠2,∠3=∠4,∠5=∠6,∠160°,∠720°

1)試說(shuō)明ACBD

2)求∠3及∠5的度數(shù)

3)求四邊形ABCD各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,∠B的平分線BE與AD交于點(diǎn)E,∠BED的平分線EF與DC交于點(diǎn)F,若AB=9,DF=2FC,則BC= . (結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案