【題目】已知:如圖∠1=∠2,∠3=∠4,∠5=∠6,∠1=60°,∠7=20°
(1)試說明AC⊥BD
(2)求∠3及∠5的度數
(3)求四邊形ABCD各內角的度數.
【答案】(1)見解析;(2)30°,70°;(3)∠DAB =60°,∠ABC =80°,∠DCB =140°,∠ADC =80°
【解析】
(1)根據三角形內角和定理即可證得∠1+∠3=90°,則在△AOD中,利用內角和定理即可求得∠AOD=90°,即可證得;
(2)根據直角三角形的兩個銳角互余即可求解;
(3)根據根據(2)即可求得∠DAB,∠ADC,∠DCB的度數,然后根據四邊形的內角和定理即可求得∠ABC的度數.
(1)∵∠1+∠2+∠DAB=180°,
即∠1+∠2+∠3+∠4=180°,
又∵∠1=∠2,∠3=∠4,
∴∠1+∠3=90°,
∵∠1+∠3+∠AOD=90°,
∴∠AOD=90°,
∴AC⊥BD;
(2)∵∠1+∠3=90°,
∴∠3=90°∠1=90°60°=30°.
∵AC⊥BD,
∴∠COD=90°,
∴∠5+∠7=90°,
∴∠5=90°∠7=70°;
(3)∠DAB=2∠3=60°,
∠ADC=∠1+∠7=60°+20°=80°,
∠DCB=∠5+∠6=70°+70°=140°,
則∠ABC=360°∠DAB∠ADC∠DCB=80°.
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點
的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系
如圖所示,給出以下結論:①a=8;②b=92;③c=123.其中正確的是【 】
A.①②③ B.僅有①② C.僅有①③ D.僅有②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1.平面直角坐標系為原點,長方形的頂點在坐標軸上,點,,且己知是64的立方根,.
(1)求點的坐標;
(2)如圖1,有兩動點點從點出發(fā)沿軸負方向以1個單位長度每秒的速度勻速移動,點從點出發(fā)以2個單位長度每秒的速度沿的路線勻速移動,點到達點整個運動隨之結束.若長方形對角線的交點的坐標是,設運動時間為秒,問:以為頂點的多邊形面積是否為定值,若是,請求出此多邊形的面積;若不是,請說明理由.
(3)如圖2,是線段上一點,使,點是線段上任意一點(不與點重合),連接交于點.已知,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a、b、c滿足|a﹣|++(c﹣4)2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構成三角形?若能構成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某數學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°,若坡角∠FAE=30°,求大樹的高度(結果保留整數,參考數據:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, ≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩人玩摸球游戲:一個不透明的袋子中裝有相同大小的3個球,球上分別標有數字1,2,3.首先,甲從中隨機摸出一個球,然后,乙從剩下的球中隨機摸出一個球,比較球上的數字,較大的獲勝.
(1)求甲摸到標有數字3的球的概率;
(2)這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥BC,AE平分∠BAD交BC于點E,AE⊥DE,∠1+∠2=90°,M、N分別是BA,CD延長線上的點,∠EAM和∠EDN的平分線交于點F,下列結論:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F為定值.其中結論正確的有( )
A. 4個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點A落在點A′處,若A′為CE的中點,則折痕DE的長為( )
A.
B.3
C.2
D.1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com