【題目】將一個正方形甲和兩個正方形乙分別沿著圖中虛線川剪刀剪成4個完全相等的長方形和一個正方形(如圖1),已知正方形甲中剪出的小正方形面積是1,正方形乙中剪出的小正方形面積是4,現(xiàn)將剪得的12個長方形擺成如圖2正方形(不重疊無縫隙).則正方形的面積是()

A.9B.16C.25D.36

【答案】C

【解析】

根據(jù)題意,設(shè)甲中分割出的長方形寬為x,則長為x+1,乙中分割出的長方形長為x+1,寬為x+1-2,由圖(2)列出方程式2x+1-2+x=x+1,解得x值,求出乙圖的正方形的邊長即可得出面積.

根據(jù)題意,設(shè)甲中長方形分割的長方形的寬為x,則長為x+1,由圖(2)可知,乙中分割出的長方形長為x+1,寬為x+1-2,則列出方程式可得

2x+1-2+x=x+1

解得x=,

圖(2)中正方形的邊長為+1=5

所以正方形ABCD的面積為25,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B,C三種款式的帽子,E,F二種款式的圍巾,穿戴時小婷任意選一頂帽子和一條圍巾.

1)用合適的方法表示搭配的所有可能性結(jié)果.

2)求小婷恰好選中她所喜歡的A款帽子和E款圍巾的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空或填寫理由.

(1)如圖甲,∵∠   =   (已知);

ABCD(   

(2)如圖乙,已知直線ab,3=80°,求∠1,2的度數(shù).

解:∵ab,(   

∴∠1=4(   

又∵∠3=4(   

3=80°(已知)

∴∠1=(   )(等量代換)

又∵∠2+3=180°

∴∠2=(   )(等式的性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△ABC先向上平移3個單位長度,再向右平移2個單位長度,得到△A1B1C1.

(1)在圖中畫出△A1B1C1,并寫出點A1、B1C1的坐標(biāo);

(2)連接A1AC1C,則四邊形A1ACC1的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為引導(dǎo)學(xué)生愛讀書,多讀書,讀好書”,某校七(2)班決定購買A、B兩種書籍.若購買A種書籍1本和B種書籍3本,共需要180元;若購買A種書籍3本和B種書籍1本,共需要140.

(1)A、B兩種書籍每本各需多少元?

(2)該班根據(jù)實際情況,要求購買A、B兩種書籍總費用不超過700元,并且購買B種書籍的數(shù)量是A種書籍的,求該班本次購買AB兩種書籍有哪幾種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2-5ax+4a與x軸相交于點A,B,且過點C(5,4).

(1)求a的值和該拋物線頂點P的坐標(biāo);

(2)請你設(shè)計一種平移的方法,使平移后拋物線的頂點落在第二象限并寫出平移后拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設(shè)點P的運動時間為t秒,當(dāng)t的值為_____秒時,ABPDCE全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)矩形地面,觀察下列圖形并解答有關(guān)問題:

……

n=1     n=2      n=3

(1)在第n個圖中,共有 塊白色瓷磚,共有 塊黑色瓷磚(均用含n的代數(shù)式表示);

(2)設(shè)鋪設(shè)地面所用瓷磚總數(shù)為y,請寫出y與(1)中的n的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

(3)若鋪設(shè)這樣的矩形地面共用了506塊瓷磚,通過計算求此時n的值;

(4)是否存在n,使得黑瓷磚與白瓷磚塊數(shù)相等?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛時間x(小時)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖象提供的信息,解決下列問題:

1AB兩城相距多少千米?

2)分別求甲、乙兩車離開A城的距離yx的關(guān)系式.

3)求乙車出發(fā)后幾小時追上甲車?

4)求甲車出發(fā)幾小時的時候,甲、乙兩車相距50千米?

查看答案和解析>>

同步練習(xí)冊答案