已知⊙,⊙,⊙兩兩相切,且半徑分別為2cm,3cm,l0cm,則

的形狀是

[  ]

A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等腰直角三角形
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過(guò)旋轉(zhuǎn)變換得到的.
(1)問(wèn)由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo);
(2)請(qǐng)你畫(huà)出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫(xiě)出變換后與A1相對(duì)應(yīng)點(diǎn)A2的坐標(biāo);
(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為a、b,斜邊為c).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•隨州)在一次數(shù)學(xué)活動(dòng)課上,老師出了一道題:
(1)解方程x2-2x-3=0
巡視后,老師發(fā)現(xiàn)同學(xué)們解此道題的方法有公式法、配方法和十字相乘法(分解因式法).接著,老師請(qǐng)大家用自己熟悉的方法解第二道題:
(2)解關(guān)于x的方程mx2+(m-3)x-3=0(m為常數(shù),且m≠0).
老師繼續(xù)巡視,及時(shí)觀察、點(diǎn)撥大家,再接著,老師將第二道題變式為第三道題:
(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù))
①求證:不論m為何值,此函數(shù)的圖象恒過(guò)x軸、y軸上的兩個(gè)定點(diǎn)(設(shè)x軸上的定點(diǎn)為A,y軸上的定點(diǎn)為C);
②若m≠0時(shí),設(shè)此函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為B.當(dāng)△ABC為銳角三角形時(shí),觀察圖象,直接寫(xiě)出m的取值范圍.
請(qǐng)你也用自己熟悉的方法解上述三道題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年滬科初中數(shù)學(xué)八年級(jí)下19.4一元二次方程根與系數(shù)的關(guān)系練習(xí)卷(解析版) 題型:解答題

已知方程,

(1)求證方程必有相異實(shí)根;

(2)取何值時(shí),方程有兩個(gè)正根;

(3)取何值時(shí),兩根相異,并且負(fù)根的絕對(duì)值較大;

(4)取何值時(shí),方程有一根為零.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過(guò)旋轉(zhuǎn)變換得到的.
(1)問(wèn)由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo);
(2)請(qǐng)你畫(huà)出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫(xiě)出變換后與A1相對(duì)應(yīng)點(diǎn)A2的坐標(biāo);
(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為a、b,斜邊為c).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

已知△ABC的三邊長(zhǎng)為a,b,c,且滿(mǎn)足方程a2x2-(c2-a2-b2)x+b2=0,則方程根的情況是


  1. A.
    有兩相等實(shí)根
  2. B.
    有兩相異實(shí)根
  3. C.
    無(wú)實(shí)根
  4. D.
    不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案