已知拋物線經(jīng)過A(-1,0),B(0,-2),C(1,-2),且與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對(duì)稱軸;
(3)求四邊形ABDE的面積.

解:(1)∵y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(0,-2),C(1,-2)三點(diǎn),
,
解得:
則物線的解析式為:y=x2-x-2;

(2),
所以頂點(diǎn)坐標(biāo)D(),對(duì)稱軸:x=;

(3)連接OD,由x2-x-2=0
解得:1=-1,x2=2,
所以O(shè)E=2.
∴S四邊形ABDE=S△AOB+S△OBD+S△OED
=×1×2+×2×+×2×
=
分析:(1)利用待定系數(shù)法求二次函數(shù)解析式即可;
(2)利用配方法求出二次函數(shù)頂點(diǎn)坐標(biāo)和對(duì)稱軸即可;
(3)利用分割法求S四邊形ABDE=S△AOB+S△OBD+S△OED得出即可.
點(diǎn)評(píng):此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及配方法求拋物線頂點(diǎn)坐標(biāo)以及四邊形面積求法,利用分割法得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-4,0),B(0,-4),
C(2,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.
求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過點(diǎn)A(4,0)、B(1,-6)和原點(diǎn).求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,已知拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),拋物線對(duì)稱軸l與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對(duì)稱軸;
(2)點(diǎn)P在拋物線上,且以A、O、M、P為頂點(diǎn)的四邊形四條邊的長度為四個(gè)連續(xù)的正整數(shù),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo);
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)你求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件,求二次函數(shù)的關(guān)系式
(1)已知拋物線的頂點(diǎn)在(1,-2),且過點(diǎn)(2,3);
(2)已知拋物線經(jīng)過(2,0)、(0,-2)和(-2,3)三點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過A(-2,0),B(-3,3)及原點(diǎn)O,頂點(diǎn)為C.
(1)求拋物線的函數(shù)解析式;
(2)求拋物線的對(duì)稱軸和C點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案