求證:不論x、y取何有理數(shù),多項(xiàng)式(x3+3x2y-2xy2+4y3+1)+(y3-xy2+x2y-2x3+2)+(x3-4x2y+3xy2-5y3-8)的值恒等于一個(gè)常數(shù),并求出這個(gè)常數(shù).
分析:把所求的式子去括號(hào)、然后合并同類(lèi)項(xiàng)即可證明.
解答:解:(x3+3x2y-2xy2+4y3+1)+(y3-xy2+x2y-2x3+2)+(x3-4x2y+3xy2-5y3-8)
=x3+3x2y-2xy2+4y3+1+y3-xy2+x2y-2x3+2+x3-4x2y+3xy2-5y3-8
=-5.
常數(shù)為-5.
點(diǎn)評(píng):本題考查了整式的運(yùn)算,正確進(jìn)行去括號(hào)、合并同類(lèi)項(xiàng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知關(guān)于x的一元二次方程x2-(m-1)x+m-3=0.
(1)求證:不論m取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根.
(2)若直線y=(m-1)x+3與函數(shù)y=x2+m的圖象C1的一個(gè)交點(diǎn)的橫坐標(biāo)為2,求關(guān)于x的一元二次方程x2-(m-1)x+m-3=0的解.
(3)在(2)的條件下,將拋物線y=x2-(m-1)x+m-3繞原點(diǎn)旋轉(zhuǎn)180°,得到圖象C2,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,分別與圖象C1、C2交于M、N兩點(diǎn),當(dāng)線段MN的長(zhǎng)度最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

求證:不論x、y取何值,代數(shù)式x2+y2+4x-6y+14的值總是正數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=x2+ax+a-3
(1)求證:不論a取何值,拋物線與x軸總有兩個(gè)交點(diǎn).
(2)當(dāng)a=5時(shí),求拋物線與x軸的兩個(gè)交點(diǎn)間的距離.
(3)直接寫(xiě)出a=
2
2
 時(shí),拋物線與x軸的兩個(gè)交點(diǎn)間的距離最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步單元練習(xí)北師大版數(shù)學(xué)九年級(jí)上冊(cè) 題型:047

求證:不論a,b取何實(shí)數(shù),多項(xiàng)式a2b2+b2-6ab-4b+14的值都不小于1.

查看答案和解析>>

同步練習(xí)冊(cè)答案