已知拋物線y=x2+ax+a-3
(1)求證:不論a取何值,拋物線與x軸總有兩個(gè)交點(diǎn).
(2)當(dāng)a=5時(shí),求拋物線與x軸的兩個(gè)交點(diǎn)間的距離.
(3)直接寫出a=
2
2
 時(shí),拋物線與x軸的兩個(gè)交點(diǎn)間的距離最小.
分析:(1)求拋物線解析式的判別式,利用配方法判斷△>0即可;
(2)設(shè)拋物線與x軸兩交點(diǎn)橫坐標(biāo)為x1,x2,利用兩根關(guān)系求|x1-x2|的值;
(3)利用兩根關(guān)系求|x1-x2|的表達(dá)式,利用非負(fù)數(shù)的性質(zhì)求最小值.
解答:解:(1)證明:∵△=a2-4(a-3)=(a-2)2+8>0,
∴不論a取何值,拋物線與x軸總有兩個(gè)交點(diǎn);

(2)當(dāng)a=5時(shí),求拋物線為y=x2+5x+2,
設(shè)拋物線與x軸兩交點(diǎn)橫坐標(biāo)為x1,x2,
則x1+x2=-5,x1x2=2,
∴|x1-x2|=
(x1-x22
=
(x1+x22-4x1x2
=
25-8
=
17
,
∴拋物線與x軸的兩個(gè)交點(diǎn)間的距離為
17
;

(3)∵x1+x2=-a,x1x2=a-3,

∴|x1-x2|=
(x1-x22
=
(x1+x22-4x1x2
=
 a2-4a+12   
=
(a-2)2+8
,

∴a=2拋物線與x軸的兩個(gè)交點(diǎn)間的距離最小,
故答案是2.
點(diǎn)評(píng):本題考查了拋物線 與x軸的交點(diǎn)求法,根的判別式的運(yùn)用,兩點(diǎn)間的距離的求解.關(guān)鍵是熟悉拋物線與x軸的交點(diǎn)個(gè)數(shù)的判斷方法,利用兩根關(guān)系求兩交點(diǎn)間的距離.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
(2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過點(diǎn)C,求平移后所得拋物線的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案