(2005•呼和浩特)如圖,在等邊△ABC中,P為BC上一點(diǎn),D為AC上一點(diǎn),且∠APD=60°,BP=1,CD=,則△ABC的邊長為( )

A.3
B.4
C.5
D.6
【答案】分析:根據(jù)題意可得:設(shè)△ABC的邊長為x,易得:△ABP∽△PCD;故可得:=;即=,解得△ABC的邊長為3.
解答:解:設(shè)△ABC的邊長為x,
∵△ABC是等邊三角形,
∴∠DCP=∠PBA=60°.
∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,
∴∠BAP=∠CPD.
∴△ABP∽△CPD.
=,
=
∴x=3.
即△ABC的邊長為3.
故選A.
點(diǎn)評(píng):本題考查等邊三角形的性質(zhì)與運(yùn)用,其三邊相等,三個(gè)內(nèi)角相等,均為60°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•呼和浩特)如圖,已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-,b),過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,△AOB的面積為
(1)求k和b的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)M,求OA:OM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•呼和浩特)如圖,已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-,b),過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,△AOB的面積為
(1)求k和b的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)M,求OA:OM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《有理數(shù)》(02)(解析版) 題型:選擇題

(2005•呼和浩特)2006年世界杯足球賽預(yù)計(jì)現(xiàn)場觀看人數(shù)將達(dá)到1 820 000人,用科學(xué)記數(shù)法表示為( )
A.1.82×105
B.0.182×107
C.1.82×106
D.182×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:選擇題

(2005•呼和浩特)如圖,在等邊△ABC中,P為BC上一點(diǎn),D為AC上一點(diǎn),且∠APD=60°,BP=1,CD=,則△ABC的邊長為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《概率》(04)(解析版) 題型:解答題

(2005•呼和浩特)某商場搞“真情回報(bào)社會(huì)”的幸運(yùn)抽獎(jiǎng)活動(dòng),最高獎(jiǎng)金為每份l萬元,平均獎(jiǎng)金180元.下面是獎(jiǎng)金的分配表:
獎(jiǎng)金等級(jí)一等獎(jiǎng)二等獎(jiǎng)三等獎(jiǎng)四等獎(jiǎng)五等獎(jiǎng)
獎(jiǎng)金額(元)10000500010005010
中獎(jiǎng)人數(shù)3889300600
一名顧客抽到一張獎(jiǎng)券,獎(jiǎng)金數(shù)為10元,她調(diào)查了周圍不少正在兌獎(jiǎng)的其他顧客,很少有超過50元的,她氣憤地去找商場的領(lǐng)導(dǎo)理論,領(lǐng)導(dǎo)解釋說這不存在什么欺騙,平均獎(jiǎng)金確實(shí)是180元,你認(rèn)為商場所說的平均獎(jiǎng)金是否欺騙了顧客?此種說法是否能夠很好地反映中獎(jiǎng)的一般金額?用你所學(xué)的統(tǒng)計(jì)與概率的有關(guān)知識(shí)做簡要分析說明.以后再遇上類似抽獎(jiǎng)活動(dòng)的問題,你會(huì)更關(guān)心什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案