如圖,若是⊙的直徑,是⊙的弦,∠=56°,則∠=    度.

 

【答案】

34

【解析】

試題分析:由是⊙的直徑可得∠ADB=90°,即可求得∠A的度數(shù),從而可以求得結(jié)果.

是⊙的直徑

∴∠ADB=90°

∵∠=56°

∴∠A=34°

∴∠=∠A=34°.

考點(diǎn):圓周角定理,三角形的內(nèi)角和定理

點(diǎn)評(píng):解題的關(guān)鍵是熟記直徑所對(duì)的圓周角為直角;同弧或等弧所對(duì)的圓周角相等,均等于所對(duì)圓心角的一半.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-4),與x軸交于A、B兩點(diǎn),A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線的對(duì)稱軸交于點(diǎn)E,依次連接A、D、B、E,點(diǎn)Q為線段AB上一個(gè)動(dòng)點(diǎn)(Q與A、B兩點(diǎn)不重合),過(guò)點(diǎn)Q作QF⊥AE于F,QG⊥DB于G,請(qǐng)判斷
QF
BE
+
QG
AD
是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若點(diǎn)H是線段EQ上一點(diǎn),過(guò)點(diǎn)H作MN⊥EQ,MN分別與邊AE、BE相交于M、N,(M與A、E不重合,N與E、B不重合),請(qǐng)判斷
QA
QB
=
EM
EN
是否成立?若成立,請(qǐng)給出證明;若不成立,精英家教網(wǎng)請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-3),與x軸交于A,B兩點(diǎn),A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線對(duì)稱軸交于點(diǎn)E,依次連接A,D,B,E,點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn)(P與A,B兩點(diǎn)不重合),過(guò)點(diǎn)P作PM⊥AE于M,PN⊥DB于N,請(qǐng)判斷
PM
BE
+
PN
AD
是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若點(diǎn)S是線段EP上一點(diǎn),過(guò)點(diǎn)S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點(diǎn)F,G(F與A,E不重合,G與E,B不重合),請(qǐng)判斷
PA
PB
=
EF
EG
是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-3),與x軸交于A,B兩點(diǎn),A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線對(duì)稱軸交于點(diǎn)E,依次連接A,D,B,E,點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn)(P與A,B兩點(diǎn)不重合),過(guò)點(diǎn)P作PM⊥AE于M,PN⊥DB于N,請(qǐng)判斷數(shù)學(xué)公式是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若點(diǎn)S是線段EP上一點(diǎn),過(guò)點(diǎn)S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點(diǎn)F,G(F與A,E不重合,G與E,B不重合),請(qǐng)判斷數(shù)學(xué)公式是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-3),與x軸交于A,B兩點(diǎn),A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線對(duì)稱軸交于點(diǎn)E,依次連接A,D,B,E,點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn)(P與A,B兩點(diǎn)不重合),過(guò)點(diǎn)P作PM⊥AE于M,PN⊥DB于N,請(qǐng)判斷是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若點(diǎn)S是線段EP上一點(diǎn),過(guò)點(diǎn)S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點(diǎn)F,G(F與A,E不重合,G與E,B不重合),請(qǐng)判斷是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年3月中考數(shù)學(xué)模擬試卷(22)(解析版) 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-3),與x軸交于A,B兩點(diǎn),A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線對(duì)稱軸交于點(diǎn)E,依次連接A,D,B,E,點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn)(P與A,B兩點(diǎn)不重合),過(guò)點(diǎn)P作PM⊥AE于M,PN⊥DB于N,請(qǐng)判斷是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若點(diǎn)S是線段EP上一點(diǎn),過(guò)點(diǎn)S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點(diǎn)F,G(F與A,E不重合,G與E,B不重合),請(qǐng)判斷是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案