如圖,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的長度為何?( 。

 

A.

8

B.

10

C.

D.

考點:

三角形的重心;等腰三角形的性質(zhì);勾股定理。

分析:

根據(jù)在△ABC中,根據(jù)三線合一定理與勾股定理即可求得AN的長,然后根據(jù)重心的性質(zhì)求得AM的長,即可求解.

解答:

解:如圖,延長AM,交BC于N點,

∵AB=AC,

∴△ABC為等腰三角形,

又∵M是△ABC的重心,

∴AN為中線,且AN⊥BC,

∴BN=CN==8,

AN==15,

AM=AN=×15=10,

故選,:B.

點評:

此題主要考查了重心的性質(zhì)以及等腰三角形的三線合一性質(zhì)和勾股定理等知識,根據(jù)重心性質(zhì)得出AM=AN是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案