【題目】如圖,將平行四邊形ABCD折疊,使頂點D恰好落在AB邊上的點M處,折痕為AN,有以下四個結(jié)論①MNBC;②MN=AM;③四邊形MNCB是矩形;④四邊形MADN是菱形,以上結(jié)論中,你認為正確的有_____________(填序號).

【答案】①②④

【解析】

根據(jù)四邊形ABCD是平行四邊形,可得∠B=D,再根據(jù)折疊可得∠D=NMA,再利用等量代換可得∠B=NMA,然后根據(jù)平行線的判定方法可得MNBC;證明四邊形AMND是平行四邊形,再根據(jù)折疊可得AM=DA,進而可證出四邊形AMND為菱形,再根據(jù)菱形的性質(zhì)可得MN=AM,不能得出∠B=90°;即可得出結(jié)論.

解:∵四邊形ABCD是平行四邊形,

∴∠B=D,

∵根據(jù)折疊可得∠D=NMA,

∴∠B=NMA

MNBC;①正確;

∵四邊形ABCD是平行四邊形,

DNAM,ADBC,

MNBC,

ADMN,

∴四邊形AMND是平行四邊形,

根據(jù)折疊可得AM=DA,

∴四邊形AMND為菱形,

MN=AM;②④正確;

沒有條件證出∠B=90°,④錯誤;

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠B=62°CE平分∠ACB,CD⊥ABD,DF⊥CEF,求∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好治理西太湖水質(zhì),保護環(huán)境,市治污公司決定購買10 臺污水處理設(shè)備,現(xiàn)有AB兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:

經(jīng)調(diào)查:購買-A型設(shè)備比購買一-B型設(shè)備多2萬元,購買2A型設(shè)備比購買4B型設(shè)備少4萬元.

(1)ab的值;

(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過47萬元,并且該月要求處理西太湖的污水量不低于1860 噸,則有哪幾種購買方案?請指出最省錢的一種購買方案,并指出相應(yīng)的費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點是坐標原點,,均為等邊三角形,軸正半軸上,點,點,點內(nèi)部,點的外部,,,交于點,連接,,.

1)求點的坐標;

2)判斷的數(shù)量關(guān)系,并說明理由;

3)直接寫出的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在表盤上1200時,時針、分針都指向數(shù)字12,我們將這一位置稱為“標準位置”(圖中).小文同學(xué)為研究12分()時,時針與分針的指針位置,將時針記為,分針記為.如:1230時,時針、分針的位置如圖2所示,試解決下列問題:

1)分針每分鐘轉(zhuǎn)動 °;時針每分鐘轉(zhuǎn)動 °;

2)當在同一直線上時,求的值;

3)當、、兩兩所夾的三個角、中有兩個角相等時,試求出所有符合條件的的值.(本小題中所有角的度數(shù)均不超過180°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,每個小正方形的邊長為1cm

1)求四邊形ABCD的面積;

2)四邊形ABCD中有直角嗎?若有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時間為標準分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).

請根據(jù)以上信息,解答下列問題:

(1)該汽車交易市場去年共交易二手轎車   輛.

(2)把這幅條形統(tǒng)計圖補充完整.(畫圖后請標注相應(yīng)的數(shù)據(jù))

(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數(shù)所對應(yīng)扇形的圓心角為   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,B=60°,BC=2,A′B′C可以由ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。

A. 6 B. 4 C. 3 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點,過點ABC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC ;

(2)若∠BAC=,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案