【題目】在平面直角坐標系中,正方形ABCD的頂點分別為A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y軸上有一點P(0,2).作點P關于點A的對稱點P1 , 作P1關于點B的對稱點P2 , 作點P2關于點C的對稱點P3 , 作P3關于點D的對稱點P4 , 作點P4關于點A的對稱點P5 , 作P5關于點B的對稱點P6┅,按如此操作下去,則點P2011的坐標為(
A.(0,2)
B.(2,0)
C.(0,﹣2)
D.(﹣2,0)

【答案】D
【解析】解:∵作點P關于點A的對稱點P1 , 作P1關于點B的對稱點P2 , 作點P2關于點C的對稱點P3 , 作P3關于點D的對稱點P4 , 作點P4關于點A的對稱點P5 , 作P5關于點B的對稱點P6┅,按如此操作下去, ∴每變換4次一循環(huán),
∴點P2011的坐標為:2011÷4=502…3,
點P2011的坐標與P3坐標相同,
∴點P2011的坐標為:(﹣2,0),
故選:D.

根據(jù)正方形的性質(zhì)以及坐標變化得出對應點的坐標,再利用變化規(guī)律得出點P2011的坐標與P3坐標相同,即可得出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學支教.
(1)若從甲、乙兩校報名的教師中分別隨機選1名,則所選的2名教師性別相同的概率是
(2)若從報名的4名教師中隨機選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學校的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點,點P,Q是直線l上的兩個動點,且點P在第二象限,點Q在第四象限,∠POQ=135°.

(1)求△AOB的周長;
(2)設AQ=t>0,試用含t的代數(shù)式表示點P的坐標;
(3)當動點P,Q在直線l上運動到使得△AOQ與△BPO的周長相等時,記tan∠AOQ=m,若過點A的二次函數(shù)y=ax2+bx+c同時滿足以下兩個條件:
①6a+3b+2c=0;
②當m≤x≤m+2時,函數(shù)y的最大值等于 ,求二次項系數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三個布袋都不透明,甲袋中裝有1個紅球和1個白球;乙袋中裝有一個紅球和2個白球;丙袋中裝有2個白球.這些球除顏色外都相同.從這3個袋中各隨機地取出1個球. ①取出的3個球恰好是2個紅球和1個白球的概率是多少?
②取出的3個球全是白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后得到△EDC,此時點D在AB邊上,斜邊DE交AC邊于點F,則n的大小和圖中陰影部分的面積分別為(
A.30,2
B.60,2
C.60,
D.60,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接建黨90周年,某校組織了以“黨在我心中”為主題的電子小報制作比賽,評分結果只有60,70,80,90,100五種.現(xiàn)從中隨機抽取部分作品,對其份數(shù)及成績進行整理,制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)求本次抽取了多少份作品,并補全兩幅統(tǒng)計圖;
(2)已知該校收到參賽作品共900份,請估計該校學生比賽成績達到90分以上(含90分)的作品有多少份?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“一根彈簧原長10cm,在彈性限度內(nèi)最多可掛質(zhì)量為5kg的物體,掛上物體后彈簧伸長的長度與所掛物體的質(zhì)量成正比, ,則彈簧的總長度y(cm)與所掛物體質(zhì)量x(kg)之間的函數(shù)關系式為y=10+0.5x(0≤x≤5).”王剛同學在閱讀上面材料時發(fā)現(xiàn)部分內(nèi)容被墨跡污染,被污染的部分是確定函數(shù)關系式的一個條件,你認為該條件可以是:(只需寫出1個).

查看答案和解析>>

同步練習冊答案