【題目】點A(-2,1)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象與直線y=﹣x+b都經(jīng)過點A(1,4),且該直線與x軸的交點為B.
(1)求反比例函數(shù)和直線的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個最小方格的邊長均為1個單位,P1,P2,P3,…均在格點上,其順序按圖中“→”方向排列,如:點P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),….根據(jù)這個規(guī)律,求點P2018的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.易證:CE=CF.
(1)在圖1中,若G在AD上,且∠GCE=450.試猜想GE,BE,GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運用(1)中解答所積累的經(jīng)驗和知識,完成下面兩題:
①如圖2,在四邊形ABCD中∠B=∠D=900,BC=CD,點E,點G分別是AB邊,AD邊上的動點.若∠BCD=α,∠ECG=β,試探索當α和β滿足什么關(guān)系時,圖1中GE,BE,GD三線段之間的關(guān)系仍然成立,并說明理由.
②在平面直角坐標中,邊長為1的正方形OABC的兩頂點A,C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖3).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?若不變,請直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).
(1)求拋物線F1所表示的二次函數(shù)的表達式;
(2)若點M是拋物線F1位于第二象限圖象上的一點,設(shè)四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時點M的坐標及S的最大值;
(3)如圖②,將拋物線F1沿y軸翻折并“復(fù)制”得到拋物線F2,點A、B與(2)中所求的點M的對應(yīng)點分別為A′、B′、M′,過點M′作M′E⊥x軸于點E,交直線A′C于點D,在x軸上是否存在點P,使得以A′、D、P為頂點的三角形與△AB′C相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班學(xué)生共40人,外出參加植樹活動,根據(jù)任務(wù)不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比為1︰2︰5,則甲組有( )
A. 5人
B. 10人
C. 20人
D. 25人
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com