【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0),C點(diǎn)的坐標(biāo)為(0,3),點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O﹣C﹣B﹣A﹣O的路線移動(dòng)(即:沿著長(zhǎng)方形移動(dòng)一周).
(1)直接寫(xiě)出B點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P移動(dòng)了3秒時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);
(3)在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸距離為2個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
【答案】(1)B(4,3);(2)P(3,3);(3)點(diǎn)P移動(dòng)的時(shí)間為1秒或4秒.
【解析】
(1)根據(jù)矩形的性質(zhì)以及點(diǎn)的坐標(biāo)的定義寫(xiě)出即可;
(2)先求得點(diǎn)P運(yùn)動(dòng)的距離,從而可得到點(diǎn)P的坐標(biāo);
(3)根據(jù)矩形的性質(zhì)以及點(diǎn)到x軸的距離等于縱坐標(biāo)的長(zhǎng)度求出OP,再根據(jù)時(shí)間=路程÷速度列式計(jì)算即可得解.
(1)∵A點(diǎn)的坐標(biāo)為(4,0),C點(diǎn)的坐標(biāo)為(0,3),
∴OA=4,OC=3,
∴點(diǎn)B(4,3);
(2)如圖所示,
∵點(diǎn)P移動(dòng)了3秒時(shí)的距離是2×3=6,
∴點(diǎn)P的坐標(biāo)為(3,3);
(3)點(diǎn)P到x軸距離為2個(gè)單位長(zhǎng)度時(shí),點(diǎn)P的縱坐標(biāo)為2,
若點(diǎn)P在OC上,則OP=2,
t=2÷2=1秒,
若點(diǎn)P在AB上,則OC+BC+BP=3+4+(3﹣2)=8,
t=8÷2=4秒,
綜上所述,點(diǎn)P移動(dòng)的時(shí)間為1秒或4秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所給圖形中是中心對(duì)稱(chēng)圖形但不是軸對(duì)稱(chēng)圖形的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一邊長(zhǎng)為l的正方形OABC,邊OA、OC分別在x軸、y軸上,如果以對(duì)角線OB為邊作第二個(gè)正方形OBB1C1,再以對(duì)角線OBl為邊作第三個(gè)正方形OBlB2C2,照此規(guī)律作下去,則點(diǎn)B2020的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:橫、縱坐標(biāo)相等的點(diǎn)叫做“完美點(diǎn)”.
(1)若點(diǎn)A(x,y)是“完美點(diǎn)”,且滿足x+y=4,求點(diǎn)A的坐標(biāo);
(2)如圖1,在平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A坐標(biāo)為(0,4),連接OB,E點(diǎn)從O向B運(yùn)動(dòng),速度為2個(gè)單位/秒,到B點(diǎn)時(shí)運(yùn)動(dòng)停止,設(shè)運(yùn)動(dòng)時(shí)間為t.
①不管t為何值,E點(diǎn)總是“完美點(diǎn)”;
②如圖2,連接AE,過(guò)E點(diǎn)作PQ⊥x軸分別交AB、OC于P、Q兩點(diǎn),過(guò)點(diǎn)E作EF⊥AE交x軸于點(diǎn)F,問(wèn):當(dāng)E點(diǎn)運(yùn)動(dòng)時(shí),四邊形AFQP的面積是否發(fā)生變化?若不改變,求出面積的值;若改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,點(diǎn)D與點(diǎn)B在AC同側(cè),∠DAC>∠BAC,且DA=DC,過(guò)點(diǎn)B作BE∥DA交DC于點(diǎn)E,過(guò)E作EM∥AC交AB于點(diǎn)M,連結(jié)MD.
(1)當(dāng)∠ADC=80°時(shí),求∠CBE的度數(shù).
(2)當(dāng)∠ADC=α時(shí):
①求證:BE=CE.
②求證:∠ADM=∠CDM.
③當(dāng)α為多少度時(shí),DM=EM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“書(shū)香包河”讀書(shū)活動(dòng)中,學(xué)校準(zhǔn)備購(gòu)買(mǎi)一批課外讀物,為使課外讀物滿足學(xué)生們的需求,學(xué)校就“我最喜愛(ài)的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類(lèi)別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類(lèi)),如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)本次調(diào)查中,一共調(diào)查了______________名同學(xué);
(2)條形統(tǒng)計(jì)圖中,m=_________,n=__________;
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類(lèi)讀物所在扇形的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,A(m,0)、B(m+1,0)、E(2,0),其中-1≤m≤2,分別以AB、OE為邊向上作正方形ABCD、OEFG.
(1)請(qǐng)直接寫(xiě)出線段AB的長(zhǎng);
(2)正方形ABCD沿x軸正半軸運(yùn)動(dòng)過(guò)程中與正方形OEFG重疊部分面積為S,求S與m的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】證明命題“角的平分線上的點(diǎn)到角的兩邊的距離相等”,要根據(jù)題意,畫(huà)出圖形,并用符號(hào)表示已知和求證,寫(xiě)出證明過(guò)程,下面是小明同學(xué)根據(jù)題意畫(huà)出的圖形,并寫(xiě)出了不完整的已知和求證.
(1)已知:如圖,∠AOC=∠BOC,點(diǎn)P在OC上,________
求證:________.
請(qǐng)你補(bǔ)全已知和求證
(2)并寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】看圖填空:已知如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代換)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com