精英家教網(wǎng)如圖,E,F(xiàn),G,H分別為正方形ABCD的邊AB,BC,CD,DA上的點(diǎn),且AE=BF=CG=DH=
1
3
AB,則圖中陰影部分的面積與正方形ABCD的面積之比為( 。
A、
2
5
B、
4
9
C、
1
2
D、
3
5
分析:首先根據(jù)正方形的對稱性得到陰影部分是正方形,設(shè)正方形的邊長為3a,利用勾股定理求出CH、DM、HM的長,即可得到MN的長,也就是陰影部分的邊長,面積也就求出了,再求比值就可以了.
解答:精英家教網(wǎng)解:設(shè)CH與DE、BG分別相交于點(diǎn)M、N,正方形的邊長為3a,DH=CG=a,
首先由正方形的中心對稱得到陰影部分為正方形,以及△ADE≌△DCH,證到DM⊥CH,
在Rt△CDH中,由勾股定理得CH=
10
a,由面積公式得
1
2
CH•DM=
1
2
DH•CD
得DM=
3
10
10
a,
在Rt△DMH中由勾股定理得MH=
10
10
a
,
則MN=CH-MH-CN=
10
a-
3
10
10
a
-
10
10
a
=
3
5
10
a

所以陰影部分的面積:正方形ABCD的面積=
90
25
a2
:9a2=2:5.
故選A.
點(diǎn)評:本題考查學(xué)生對相似形的性質(zhì),正方形的性質(zhì)及全等三角形的判定方法的掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點(diǎn)是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點(diǎn),過A,B兩點(diǎn)分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點(diǎn)得菱形,又順次連接菱形各邊中點(diǎn)得矩形,再順次連接矩形各邊中點(diǎn)得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案