【題目】某學(xué)校舉行“社會主義核心價值觀”知識比賽活動,全體學(xué)生都參加比賽,學(xué)校對參賽學(xué)生均給與表彰,并設(shè)置一、二、三等獎和紀(jì)念獎共四個獎項(xiàng),賽后將獲獎情況繪制成如下所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給的信息,解答下列問題:
(1)該校共有名學(xué)生;
(2)在圖①中,“三等獎”所對應(yīng)扇形的圓心角度數(shù)是;
(3)將圖②補(bǔ)充完整;
(4)從該校參加本次比賽活動的學(xué)生中隨機(jī)抽查一名.求抽到獲得一等獎的學(xué)生的概率.
【答案】
(1)1260
(2)108°
(3)解:三等獎的人數(shù)為:1260×(1﹣20%﹣5%﹣45%)=378人,如圖2,
(4)解:抽到獲得一等獎的學(xué)生的概率為:63÷1260=5%
【解析】解:(1)該校共有學(xué)生數(shù)為:252÷20%=1260(名), 故答案為:1260.(2)一等獎扇形對應(yīng)的百分比為:63÷1260=5%,
所以三等獎扇形對應(yīng)的圓心角為:(1﹣20%﹣5%﹣45%)×360°=108°,
故答案為:108°.
(1)用二等獎的人數(shù)除以對應(yīng)的百分比求出該校共有學(xué)生數(shù),(2)先求出一等獎扇形對應(yīng)的百分比,再求三等獎扇形對應(yīng)的圓心角為:(1﹣20%﹣5%﹣45%)×360°=108°,(3)求出三等獎的人數(shù)再畫出條形統(tǒng)計圖,(4)用一等獎的學(xué)生數(shù)除以總?cè)藬?shù)就是抽到一等獎的概率,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為5,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)D在直線AB上.
(1)如圖(1),已知∠BCD=∠BAC,求證:CD是⊙O的切線;
(2)如圖(2),CD與⊙O交于另一點(diǎn)E.BD:DE:EC=2:3:5,求圓心O到直線CD的距離;
(3)若圖(2)中的點(diǎn)D是直線AB上的動點(diǎn),點(diǎn)D在運(yùn)動過程中,會出現(xiàn)C,D,E在三點(diǎn)中,其中一點(diǎn)是另外兩點(diǎn)連線的中點(diǎn)的情形,問這樣的情況出現(xiàn)幾次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長線上一點(diǎn),∠PAC=∠B,AD為⊙O的直徑,過C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判斷直線PA與⊙O的位置關(guān)系,并說明理由;
(2)求證:AG2=AFAB;
(3)若⊙O的直徑為10,AC=2 ,AB=4 ,求△AFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn):如圖1,點(diǎn)A為線段BC外一動點(diǎn),且BC=a,AB=b.當(dāng)點(diǎn)A位于什么上時,線段AC的長取得最大值,且最大值為多少(用含a,b的式子表示)
(2)應(yīng)用:點(diǎn)A為線段BC外一動點(diǎn),且BC=4,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
(3)拓展:如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(6,0),點(diǎn)P為線段AB外一動點(diǎn),且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題
(1)計算: ﹣( )﹣1+(π﹣ )0﹣(﹣1)100;
(2)已知|a+1|+(b﹣3)2=0,求代數(shù)式( ﹣ )÷ 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角三角形ABC中,BC>AB>AC,甲、乙兩人想找一點(diǎn)P,使得∠BPC與∠A互補(bǔ),其作法分別如下:
(甲)以A為圓心,AC長為半徑畫弧交AB于P點(diǎn),則P即為所求;
(乙)作過B點(diǎn)且與AB垂直的直線,作過C點(diǎn)且與AC垂直的直線,交于P點(diǎn),則P即為所求.
對于甲、乙兩人的作法,下列敘述何者正確?( )
A. 兩人皆正確
B. 兩人皆錯誤
C. 甲正確,乙錯誤
D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,點(diǎn)D在AB的延長線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長AE交BM于點(diǎn)F.
(2)由(1)得:BF與邊AC的位置關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長為半徑畫弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長為半徑畫弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com